Đáp án :
Xét tử:
2√3+√5-√13+√482√3+√5−√13+√48
=2√3+√5-√12+2√12+1=2√3+√5−√12+2√12+1
=2√3+√5-√(√12+1)2=2√3+√5−√(√12+1)2
=2√3+ √5-|2√3+1|=2√3+ √5−∣∣2√3+1∣∣
=2√3+√5-2√3-1=2√3+√5−2√3−1
=2√3+√4-2√3=2√3+√4−2√3
=2√3+√3-2√3+1=2√3+√3−2√3+1
=2√3+√(√3-1)2=2√3+√(√3−1)2
=2√3+|√3-1|=2√3+∣∣√3−1∣∣
=2√3+√3-1=2√3+√3−1
=2√2+√3=2√2+√3
=√2.√4+2√3=√2.√4+2√3
=√2.√3+2√3+1=√2.√3+2√3+1
=√2.√(√3+1)2=√2.√(√3+1)2
=√2.|√3+1|=√2.∣∣√3+1∣∣
=√2.(√3+1)=√2.(√3+1)
⇒√2.(√3+1)√2(√3-1)⇒√2.(√3+1)√2(√3−1)
=√3+1√3-1=√3+1√3−1
=(√3+1)2(√3-1)(√3+1)=(√3+1)2(√3−1)(√3+1)
=4+2√32=4+2√32
=2+√3=2+√3