0
0
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
1.$x\in\{\sqrt[5]{\dfrac{27}4}, \dfrac34\}$
2.$x=\dfrac{k\pi}{13}$ hoặc $x=\dfrac{\pi+k2\pi}{26}$
Giải thích các bước giải:
1.ĐKXĐ: $x>0$
Ta có:
$(\log_2\dfrac3x)^2+2\log_32x=\log_318x\cdot\log_2\dfrac3x$
$\to (\log_2\dfrac3x)^2+2\log_32x=\log_33^2\cdot 2x\cdot\log_2\dfrac3x$
$\to (\log_2\dfrac3x)^2+2\log_32x=(2+\log_32x)\cdot\log_2\dfrac3x$
Đặt $\log_2\dfrac3x=a, \log_32x=b$
$\to a^2+2b=(2+b)a$
$\to a^2+2b=2a+ab$
$\to a^2-ab+2b-2a=0$
$\to a(a-b)-2(a-b)=0$
$\to (a-2)(a-b)=0$
$\to a=2$ hoặc $a=b$
Trường hợp $a=2\to \log_2\dfrac3x=2$
$\to \dfrac3x=4$
$\to x=\dfrac34$
Trường hợp $a=b$
$\to \log_2\dfrac3x=\log_32x$
$\to (\log_2\dfrac3x)^6=(\log_32x)^6$
$\to ((\log_2\dfrac3x)^2)^3=((\log_32x)^3)^2$
$\to (\dfrac3x)^3=(2x)^2$
$\to \dfrac{27}{x^3}=4x^2$
$\to x^5=\dfrac{27}4$
$\to x=\sqrt[5]{\dfrac{27}4}$
2.Ta có:
$\dfrac{\cos x}{\sin3x}$
$=\dfrac{\cos x\sin x}{\sin3x\sin x}$
$=\dfrac12\cdot \dfrac{2\cos x\sin x}{\sin3x\sin x}$
$=\dfrac12\dfrac{\sin2x}{\sin3x\sin x}$
$=\dfrac12\dfrac{\sin(3x-x)}{\sin3x\sin x}$
$=\dfrac12\dfrac{\sin3x\cos x-\cos3x\sin x}{\sin3x\sin x}$
$=\dfrac12(\dfrac{\cos x}{\sin x}-\dfrac{\cos3x}{\sin3x})$
$=\dfrac12(\cot x-\cot3x)$
Tương tự:
$\dfrac{\cos3x}{\sin9x}=\dfrac12(\cot3x-\cot9x)$
$\dfrac{\cos9x}{\sin27x}=\dfrac12(\cot9x-\cot27x)$
$\to \dfrac{\cos x}{\sin3x}+\dfrac{\cos3x}{\sin9x}+\dfrac{\cos9x}{\sin27x}=\dfrac12(\cot x-\cot3x)+\dfrac12(\cot3x-\cot9x)+\dfrac12(\cot9x-\cot27x)$
$\to 0=\dfrac12(\cot x-\cot27x)$
$\to \cot x-\cot27x=0$
$\to \cot x=\cot27x$
$\to \dfrac{\cos x}{\sin x}=\dfrac{\cos27x}{\sin27x}$
$\to \cos x\sin27x=\sin x\cos27x$
$\to \sin27x\cos x-\cos27x\sin x=0$
$\to \sin(27x-x)=0$
$\to \sin26x=0$
$\to 26x=0+k2\pi$ hoặc $26x=\pi+k2\pi, k\in Z$
$\to x=\dfrac{k\pi}{13}$ hoặc $x=\dfrac{\pi+k2\pi}{26}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
37
572
32
https://hoidap247.com/cau-hoi/5924384 help