Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
5726
3917
Điều kiện xác định $x\ge -1$
$\begin{array}{l} \left( {1 + \sqrt {{x^2} + 2017x + 2016} } \right)\left( {\sqrt {2016 + x} - \sqrt {x + 1} } \right) = 2015\\ \Leftrightarrow \left( {1 + \sqrt {\left( {x + 1} \right)\left( {x + 2016} \right)} } \right)\dfrac{{2016 + x - x - 1}}{{\sqrt {2016 + x} + \sqrt {x + 1} }} = 2015\\ \Leftrightarrow \left( {1 + \sqrt {\left( {x + 1} \right)\left( {x + 2016} \right)} } \right)\dfrac{{2015}}{{\sqrt {2016 + x} + \sqrt {x + 1} }} = 2015\\ \Leftrightarrow 1 + \sqrt {\left( {x + 1} \right)\left( {x + 2016} \right)} = \sqrt {2016 + x} + \sqrt {x + 1} \\ \Leftrightarrow \sqrt {\left( {x + 1} \right)\left( {x + 2016} \right)} - \sqrt {2016 + x} + 1 - \sqrt {x + 1} = 0\\ \Leftrightarrow \sqrt {2016 + x} \left( {\sqrt {x + 1} - 1} \right) - \left( {\sqrt {x + 1} - 1} \right) = 0\\ \Leftrightarrow \left( {\sqrt {x + 1} - 1} \right)\left( {\sqrt {2016 + x} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sqrt {x + 1} = 1\\ \sqrt {2016 + x} = 1 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x + 1 = 1\\ 2016 + x = 1 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0(TM)\\ x = - 2015(L) \end{array} \right.\\ \Rightarrow S = \left\{ 0 \right\} \end{array}$
Hãy giúp mọi người biết câu trả lời này thế nào?
1
0
$ĐKXĐ: x\ge-1$
$(1+\sqrt{x^2+2017x+2016}(\sqrt{2016+x}-\sqrt{x+1})=2015$
$\Leftrightarrow(1+\sqrt{(x+1)(x+2016)}).\dfrac{(\sqrt{2016+x})^2-(\sqrt{x+1})^2}{\sqrt{2016+x}+\sqrt{x+1}}=2015$
$\Leftrightarrow(1+\sqrt{(x+1)(x+2016)}).\dfrac{(2016+x)-(x+1)}{\sqrt{2016+x}+\sqrt{x+1}}=2015$
$\Leftrightarrow(1+\sqrt{(x+1)(x+2016)}).\dfrac{(2016+x)-(x+1)}{\sqrt{2016+x}+\sqrt{x+1}}=2015$
$\Leftrightarrow(1+\sqrt{(x+1)(x+2016)}).\dfrac{2016+x-x-1}{\sqrt{2016+x}+\sqrt{x+1}}=2015$
$\Leftrightarrow(1+\sqrt{(x+1)(x+2016)}).\dfrac{2015}{\sqrt{2016+x}+\sqrt{x+1}}=2015$
$\Leftrightarrow1+\sqrt{(x+1)(x+2016)}=\sqrt{2016+x}+\sqrt{x+1}$
$\Leftrightarrow1+\sqrt{(x+1)(x+2016)}=\sqrt{2016+x}+\sqrt{x+1}$
$\Leftrightarrow1+\sqrt{(x+1)(x+2016)}-\sqrt{2016+x}-\sqrt{x+1}=0$
$\Leftrightarrow(1-\sqrt{x+1})+(\sqrt{(x+1)(x+2016)}-\sqrt{2016+x})=0$
$\Leftrightarrow(1-\sqrt{x+1})+\sqrt{2016+x}(\sqrt{x+1}-1)=0$
$\Leftrightarrow(1-\sqrt{x+1})-\sqrt{2016+x}(1-\sqrt{x+1})=0$
$\Leftrightarrow(1-\sqrt{2016+x})(1-\sqrt{x+1})=0$
$\Leftrightarrow\left[\begin{matrix} 1-\sqrt{2016+x}=0\\ 1-\sqrt{x+1}=0\end{matrix}\right.$
$\Leftrightarrow\left[\begin{matrix} \sqrt{2016+x}=1\\ \sqrt{x+1}=1\end{matrix}\right.$
$\Leftrightarrow\left[\begin{matrix} 2016+x=1\\ x+1=1\end{matrix}\right.$
$\Leftrightarrow\left[\begin{matrix} x=-2015(L)\\ x=0(TM)\end{matrix}\right.$
Vậy $x=0$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
0
3808
0
https://hoidap247.com/cau-hoi/2179063 Giúp mình với