a(y+z)=b(z+x)=c(x+y)
⇒a(y+z)abc=b(z+x)abc=c(x+y)abc
⇒y+zbc=z+xac=x+yab
Ta có:
y+zbc=z+xac=(z+x)-(y+z)ac-bc=z+x-y-zc(a-b)=x-yc(a-b)(1)
z+xac=x+yab=(x+y)-(z+x)ab-ac=x+y-z-xa(b-c)=y-za(b-c)(2)
y+zbc=x+yab=(y+z)-(x+y)bc-ab=y+z-x-yb(c-a)=z-xb(c-a)(3)
(1)(2)(3)⇒x-yc(a-b)=y-za(b-c)=z-xb(c-a)
⇒đpcm.