Giải thích các bước giải:
a.ĐKXĐ: x≠±3,x≠−12
Ta có:
P=(x−1x+3+2x−3+x2+39−x2):(2x−12x+1−1)
→P=(x−1x+3+2x−3−x2+3x2−9):−22x+1
→P=((x−1)(x−3)(x+3)(x−3)+2(x+3)(x+3)(x−3)−x2+3(x+3)(x−3))⋅2x+1−2
→P=(x−1)(x−3)+2(x+3)−(x2+3)(x+3)(x−3)⋅2x+1−2
→P=−2x+6(x+3)(x−3)⋅2x+1−2
→P=−2x+3⋅2x+1−2
→P=2x+1x+3
b.Ta có:
|x+1|=12→x+1=±12→x∈{−32,−12}
Mà x≠−12→x=−32
→P=3⋅(−32)+1−32+3
→P=−73
c.Ta có:
P=x2
→2x+1x+3=x2
→4x+2=x2+3x
→x2−x−2=0
→(x−2)(x+1)=0
→x∈{2,−1}
d.Để P∈Z
→2x+1⋮x+3
→2(x+3)−5⋮x+3
→5⋮x+3
→x+3∈U(5)
→x+3∈{1,5,−1,−5}
→x∈{−2,2,−4,−8}