

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Đáp án:
$a)$ Xe tải ngay sau khi va chạm chuyển động theo chiều cũ với tốc độ $20,93 m/s$.
$b)$ Phần năng lượng tiêu hao trong quá trình va chạm chuyển thành nhiệt năng do va chạm.
`DeltaW = 8680 (J)`
Giải thích các bước giải:
`m_1 = 1,2 (tấn) = 1200 (kg)`
`m_2 = 9 (tấn) = 9000 (kg)`
$v_1 = 25 (m/s)$
$v_2 = 20 (m/s)$
$v_1' = 18 (m/s)$
$a)$
Áp dụng bảo toàn động lượng:
`m_1 vecv_1 + m_2 vecv_2 = m_1 vecv_1' + m_2 vecv_2'`
`=> m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'`
`=> v_2' = m_1/m_2 (v_1 - v_1') + v_2 = [1200]/9000 (25- 18) + 20 = 314/15 ≈ 20,93` $(m/s)$
`to` Xe tải ngay sau khi va chạm chuyển động theo chiều cũ với tốc độ $20,93 m/s$.
$b)$
Động năng của hệ trước và ngay sau khi va chạm là:
`W_[đ] = 1/2 m_1 v_1^2 + 1/2 m_2 v_2^2`
`= 1/2 .1200.25^2 + 1/2 .9000.20^2 = 2175000 (J)`
`W_[đ'] = 1/2 m_1 v_1'^2 + 1/2 m_2 v_2'^2`
`= 1/2 .1200.18^2 + 1/2 .9000.(314/15)^2 = 2166320 (J)`
Phần năng lượng tiêu hao trong quá trình va chạm chuyển thành nhiệt năng do va chạm.
`DeltaW = W - W' = W_[đ] - W_[đ'] = 2175000 - 2166320 = 8680 (J)`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin