Gọi M là trung điểm của BC
⇒⎧⎪⎨⎪⎩SM⊥AB(SAB)⊥(ABCD)(SAB)∩(ABCD)=AB⇒SM⊥(ABCD){BC⊥ABSM⊥(ABCD)⇒SM⊥BC⇒BC⊥(SAB)⇒BC⊥SB∙SB=AB√2=a√2=SASC=√SB2+BC2=√(a√2)2+(2a)2=3a√22∙SB2=SH.SC⇒SH=SB2SC⇒SHSC=(SBSC)2=⎛⎜
⎜
⎜⎝a√23a√22⎞⎟
⎟
⎟⎠2=19⇒d(H,(ABCD))d(S,(ABCD))=HCSC=SC−SHSH=9−19=89⇒VH.ABCD=89VS.ABCD=89.13.SM.SABCD=89.13.AB2.AD.AB=89.13.a2.2a.a=8a327