Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Giải thích các bước giải:
Ta có:
$\dfrac{a}{4c}+\dfrac{c}{4b}+\dfrac{a+b}{2a+2c}+\dfrac{3a+c}{a+3b}$
$\ge 2\sqrt{\dfrac{a}{4c}\cdot\dfrac{c}{4b}}+\dfrac{a+b}{2(a+c)}+\dfrac{a+c}{a+3b}+\dfrac{2a}{a+3b}$
$\ge \dfrac{a}{2\sqrt{ab}}+\dfrac{a+b}{2(a+c)}+\dfrac{a+c}{a+3b}+\dfrac{2a}{a+3b}$
$\ge \dfrac{a}{a+b}+\dfrac{a+b}{2(a+c)}+\dfrac{a+c}{a+3b}+\dfrac{2a}{a+3b}$
$\ge 3\sqrt[3]{\dfrac{a}{a+b}\cdot\dfrac{a+b}{2(a+c)}\cdot\dfrac{a+c}{a+3b}}+\dfrac{2a}{a+3b}$
$\ge 3\sqrt[3]{\dfrac{a}{2(a+3b)}}+\dfrac{2a}{a+3b}$
$\ge \dfrac{3a}{\sqrt[3]{2a^2(a+3b)}}+\dfrac{2a}{a+3b}$
$\ge \dfrac{6a}{2\sqrt[3]{2a^2(a+3b)}}+\dfrac{2a}{a+3b}$
$\ge \dfrac{6a}{\sqrt[3]{2^3\cdot 2a^2(a+3b)}}+\dfrac{2a}{a+3b}$
$\ge \dfrac{6a}{\sqrt[3]{4a\cdot 4a\cdot (a+3b)}}+\dfrac{2a}{a+3b}$
$\ge \dfrac{18a}{3\sqrt[3]{4a\cdot 4a\cdot (a+3b)}}+\dfrac{2a}{a+3b}$
$\ge \dfrac{18a}{4a+4a+(a+3b)}+\dfrac{2a}{a+3b}$
$\ge \dfrac{18a}{9a+3b}+\dfrac{2a}{a+3b}$
$\ge 2a\cdot (\dfrac{9}{9a+3b}+\dfrac{1}{a+3b})$
$\ge 2a\cdot (\dfrac{3^2}{9a+3b}+\dfrac{1}{a+3b})$
$\ge 2a\cdot \dfrac{(3+1)^2}{(9a+3b)+(a+3b)}$
$\ge 2a\cdot \dfrac{16}{10a+6b}$
$\ge \dfrac{16}{5a+3b}$
$\to đpcm$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
2
53
4
wow. Chị giỏi quá