Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đây là câu trả lời đã được xác thực
Câu trả lời được xác thực chứa thông tin chính xác và đáng tin cậy, được xác nhận hoặc trả lời bởi các chuyên gia, giáo viên hàng đầu của chúng tôi.
Đáp án:
$t = 65,3^{o}C$
Giải thích các bước giải:
Nhiệt độ sau cùng của nước là:
\[\begin{array}{l}
{Q_{toa}} = {Q_{thu}}\\
+ \Leftrightarrow {m_1}{c_1}\Delta {t_1} = m'c'\Delta t'\\
\Leftrightarrow {m_1}.{c_1}.\left( {150 - 60} \right) = m'.c'.\left( {60 - 20} \right)\\
\Leftrightarrow 90m{c_1} = 40m'c'\\
\Leftrightarrow 2,25{m_1}{c_1} = m'c'\\
+ \Leftrightarrow {m_2}{c_1}\Delta {t_2} = m'.c'.\Delta t' + {m_1}{c_1}\Delta t'\\
\Leftrightarrow {m_2}{c_1}.\left( {100 - t} \right) = m'c'\left( {t - 60} \right) + {m_1}{c_1}\left( {t - 60} \right)\\
\Leftrightarrow \frac{{{m_1}{c_1}.\left( {100 - t} \right)}}{2} = 2,25{m_1}{c_1}.\left( {t - 60} \right) + {m_1}{c_1}\left( {t - 60} \right)\\
\Leftrightarrow \frac{{100 - t}}{2} = 2,25t - 135 + t - 60\\
\Leftrightarrow 100t = 4,5t - 270 + 2t - 120\\
\Leftrightarrow t = 65,{3^o}C
\end{array}\]
Hãy giúp mọi người biết câu trả lời này thế nào?
Đáp án:
Giải thích các bước giải:
Khi thả khối sắt lần một thì ta có phương trình cân bằng nhiệt là:
\(Q_1=Q_2\)
\(\Leftrightarrow m_1C_1\left(t_1-t\right)=m_2C_2\left(t-t_2\right)\)
\(\Leftrightarrow90m_1C_1=40m_2C_2\)
\(\Rightarrow m_2C_2=2,25m_1C_1\left(1\right)\)
Thả tiếp lần thứ hai ta được:
\(Q_3=Q_2+Q_1\)
\(\Leftrightarrow m_3C_1\left(t_3-t'\right)=m_2C_2\left(t'-t\right)+m_1C_1\left(t'-t\right)\)
\(\Leftrightarrow\frac{m_1C_1\left(100-t'\right)}{2}=2,25m_1C_1\left(t'-60\right)+m_1C_1\left(t'-60\right)\)
\(\Leftrightarrow\frac{100-t'}{2}=2,25\left(t'-60\right)+t'-60\)
\(\Rightarrow t'=\frac{196}{3}\)
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
1
65
0
Cách tính100t=4.5t-270+2t-120