Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
Giải thích các bước giải: Theo giả thiết:
$ cos\frac{A}{2} + cos\frac{B}{2} + cos\frac{C}{2} = sinA + sinB + sinC = 2sin\frac{A + B}{2}cos\frac{A - B}{2} + 2sin\frac{C}{2}cos\frac{C}{2} $
$= 2cos\frac{C}{2}cos\frac{A - B}{2} + 2cos\frac{C}{2}cos\frac{A + B}{2} = 2cos\frac{C}{2}(cos\frac{A - B}{2} + cos\frac{A + B}{2})$
$= 4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2} ≤ \frac{4}{27}(cos\frac{A}{2} + cos\frac{B}{2} + cos\frac{C}{2})³$ (Cô si cho 3 số)
$⇒ 1 ≤ \frac{4}{27}(cos\frac{A}{2} + cos\frac{B}{2} + cos\frac{C}{2})² ⇔ \frac{3\sqrt[]{3}}{2} ≤ cos\frac{A}{2} + cos\frac{B}{2} + cos\frac{C}{2} (1)$
Mặt khác áp dụng BĐT $: (x + y + z)² ≤ 3(x² + y² + z²)$ ta có :
$(cos\frac{A}{2} + cos\frac{B}{2} + cos\frac{C}{2})² ≤ 3(cos²\frac{A}{2} + cos²\frac{B}{2} + cos²\frac{C}{2})$
$= \frac{3}{2}(cosA + 1 + cosB + 1 + cosC + 1) = \frac{3}{2}(4 + cosA + cosB + cosC - 1)$
$= \frac{3}{2}(4 + 2cos\frac{A + B}{2}cos\frac{A - B}{2} - 2sin²\frac{C}{2}) = \frac{3}{4}(8 + 4cos\frac{A + B}{2}cos\frac{A - B}{2} - 4sin²\frac{C}{2}) $
$= \frac{3}{4}(9 - sin²\frac{A - B}{2} - cos²\frac{A - B}{2} + 4sin\frac{C}{2}cos\frac{A - B}{2} - 4sin²\frac{C}{2})$
$= \frac{3}{4}[9 - sin²\frac{A - B}{2} - (cos\frac{A - B}{2} - 2sin\frac{C}{2})²] ≤ \frac{27}{4} ⇔ cos\frac{A}{2} + cos\frac{B}{2} + cos\frac{C}{2} ≤ \frac{3\sqrt[]{3}}{2} (2)$
Từ $(1); (2) ⇒$ Đã xảy ra dấu $"=" ⇔ cos\frac{A}{2} = cos\frac{B}{2} = cos\frac{C}{2} = \frac{\sqrt[]{3}}{2} ⇔ A = B = C ⇔ ΔABC$ đều
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin