

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án+Giải thích các bước giải:
$\frac{x+2}{x³-1}$+$\frac{x}{x²+x+1}$+$\frac{1}{1-x}$
=$\frac{x+2}{(x-1)(x²+x+1}$+$\frac{x(x-1)}{(x-1)(x²+x+1)}$-$\frac{x²+x+1}{(x-1)(x²+x+1}$
=$\frac{x+2+x²-x-x²-x-1}{(x-1)(x²+x+1)}$
=$\frac{-x+1}{(x-1)(x²+x+1)}$
=$\frac{-(x-1)}{(x-1)(x²+x+1)}$
=$\frac{-1}{x²+x+1}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Đáp án:+Giải thích các bước giải:
Đk : x $\neq$ 1
$\frac{x+2}{x³-1}$ + $\frac{x}{x²+x+1}$ +$\frac{1}{1-x}$
= $\frac{x+2}{(x-1)(x²+x+1)}$ + $\frac{x(x-1)}{(x-1)(x²+x+1)}$ - $\frac{1(x²+x+1)}{(x-1)(x²+x+1)}$
= $\frac{x+2}{(x-1)(x²+x+1)}$ + $\frac{x²-x}{(x-1)(x²+x+1)}$ - $\frac{x²+x+1}{(x-1)(x²+x+1)}$
= $\frac{x+2+x²-x-(x²+x+1)}{(x-1)(x²+x+1)}$
= $\frac{x+2+x²-x-x²-x-1}{(x-1)(x²+x+1)}$
= $\frac{-x+1}{(x-1)(x²+x+1)}$
= $\frac{-(x-1)}{(x-1)(x²+x+1)}$
= $\frac{-1}{(x²+x+1)}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin