

Cho tập hợp X = {1; 2; 3; …; 20} gồm 20 số tự nhiên từ 1 đến 20. Một tập hợp A chỉ chứa các phần tử thuộc X được gọi là “tập tốt” nếu không tồn tại hai phần tử a, b thuộc A sao cho a < b và b chia hết cho a.
Gọi A là một “tập tốt” bất kỳ có đúng 10 phần tử. Chứng minh rằng với mọi số tự nhiên m lẻ và m < 20, luôn tồn tại a thuộc A sao cho a chia hết cho m.
Bảng tin