

rút gọn bằng tính chất cơ bản của phân thức
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án`+`Giải thích các bước giải:
`5, \frac{3x^2+5x-2}{x^2-3x-10}`
`=\frac{3x^2+6x-x-2}{x^2-5x+2x-10}`
`= \frac{(3x^2+6x)-(x+2)}{(x^2-5x)+(2x-10)}`
`=\frac{3x(x+2) - (x+2)}{x(x-5)+2(x-5)}`
`=\frac{(x+2)(3x-1)}{(x-5)(x+2)}`
`=\frac{3x-1}{x-5}`
Hãy giúp mọi người biết câu trả lời này thế nào?
Đáp án:
Ở dưới hình
Giải thích các bước giải:
Ở dưới hình
Có một mẹo nhỏ trong bài trên là em dùng máy tính:
+ Nếu em dùng máy tính Casio 570 MODE⇒5⇒3
+Nếu em dùng máy tính Casio 580 MODE⇒9⇒2⇒2
- Bước 1: Em nhập phương trình bậc 2 trên vào máy
- Bước 2: Em sẽ thấy máy cho ra nghiệm, ví dụ:
3x²+5x-2=0⇒\(\left[ \begin{array}{l}x=1/3\\x=-2\end{array} \right.\)
Với phương trình bậc 2: ax²+bx+c, ta có:
$a(x-$$x_{1}$)($x-$$x_2$)
⇒3(x-$\frac{1}{3}$ )(x+2)
Em làm tương tự với phương trình ở dưới là được nhé!
#doaminhphuc2008
Chúc bạn học tốt!
Bạn cho mik xin hay nhất cho nhóm mik nhé!
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin