

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Giải thích các bước giải:
Ta có:
$x=\sqrt{6-3\sqrt{2+\sqrt3}}-\sqrt{2+\sqrt{2+\sqrt3}}$
$\to x=\sqrt{6-\dfrac3{\sqrt2}\cdot \sqrt{4+2\sqrt3}}-\sqrt{2+\dfrac1{\sqrt2}\cdot \sqrt{4+2\sqrt3}}$
$\to x=\sqrt{6-\dfrac3{\sqrt2}\cdot \sqrt{(\sqrt3+1)^2}}-\sqrt{2+\dfrac1{\sqrt2}\cdot \sqrt{(\sqrt3+1)^2}}$
$\to x=\sqrt{6-\dfrac3{\sqrt2}\cdot (\sqrt3+1)}-\sqrt{2+\dfrac1{\sqrt2}\cdot(\sqrt3+1)}$
$\to x=\sqrt{\dfrac{-3\sqrt{3}-3+6\sqrt{2}}{\sqrt{2}}}-\sqrt{\dfrac{\sqrt{3}+1+2\sqrt{2}}{\sqrt{2}}}$
$\to x^2=\dfrac{-3\sqrt{3}-3+6\sqrt{2}}{\sqrt{2}}+\dfrac{\sqrt{3}+1+2\sqrt{2}}{\sqrt{2}}+2\cdot \sqrt{\dfrac{-3\sqrt{3}-3+6\sqrt{2}}{\sqrt{2}}}\cdot\sqrt{\dfrac{\sqrt{3}+1+2\sqrt{2}}{\sqrt{2}}}$
$\to x^2= -\sqrt{6}-\sqrt{2}+8-2\cdot \sqrt{2\sqrt3-3}$
$\to x^2= -\sqrt{6}-\sqrt{2}+8-2\cdot \sqrt3\cdot \sqrt{2-\sqrt3}$
$\to x^2= -\sqrt{6}-\sqrt{2}+8-\sqrt2\cdot \sqrt3\cdot \sqrt{4-2\sqrt3}$
$\to x^2= -\sqrt{6}-\sqrt{2}+8-\sqrt2\cdot \sqrt3\cdot \sqrt{(\sqrt3-1)^2}$
$\to x^2= -\sqrt{6}-\sqrt{2}+8-\sqrt2\cdot \sqrt3\cdot (\sqrt3-1)$
$\to x^2=-4\sqrt{2}+8$
$\to x^2-8=-4\sqrt2$
$\to (x^2-8)^2=(-4\sqrt2)^2$
$\to x^4-16x^2+64=32$
$\to x^4-16x^2+32=0$
Ta có:
$P=\dfrac{x^5-16x^3+2x^2+30x+2}{2x^4-29x^2-3x+67}$
$\to P=\dfrac{x(x^4-16x^2)+2x^2+30x+2}{2(x^4-16x^2)+3x^2-3x+67}$
$\to P=\dfrac{x\cdot (-32)+2x^2+30x+2}{2\cdot (-32)+3x^2-3x+67}$
$\to P=\dfrac{2(x^2-x+1)}{3(x^2-x+1)}$
$\to P=\dfrac23$
Hãy giúp mọi người biết câu trả lời này thế nào?

Bảng tin