

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Giải thích các bước giải:
ĐKXĐ: $y\ne 0, y\ne -2$
Ta có:
$\begin{cases}|x-10|+\dfrac{|5y-10|}{5y}=12\\ 2|x-10|-\dfrac{|2y-4|}{y+2}=5\end{cases}$
$\to \begin{cases}|x-10|+\dfrac{|y-2|}{y}=12\\ 2|x-10|-\dfrac{|2y-4|}{y+2}=5\end{cases}$
$\to \begin{cases}|x-10|=12-\dfrac{|y-2|}{y}\\ 2|x-10|-2\cdot\dfrac{|y-2|}{y+2}=5\end{cases}$
$\to 2\cdot (12-\dfrac{|y-2|}y-2\cdot\dfrac{|y-2|}{y+2}=5$
$\to 24-2\cdot \dfrac{|y-2|}y-2\cdot\dfrac{|y-2|}{y+2}=5$
$\to 24-2\cdot |y-2|\cdot (\dfrac1y+\dfrac1{y+2})=5$
$\to 2\cdot |y-2|\cdot (\dfrac1y+\dfrac1{y+2})=19$
Trường hợp: $y\ge 2\to y-2\ge 0\to |y-2|=y-2$
$\to 2\cdot (y-2)\cdot (\dfrac1y+\dfrac1{y+2})=19$
$\to \dfrac{2\left(2y+2\right)\left(y-2\right)}{y\left(y+2\right)}=19$
$\to 2\left(2y+2\right)\left(y-2\right)=19y\left(y+2\right)$
$\to y=-\dfrac{21+\sqrt{321}}{15},\:y=-\dfrac{21-\sqrt{321}}{15}$
$\to |x-10|+\dfrac{|-\dfrac{21+\sqrt{321}}{15}-2|}{-\dfrac{21+\sqrt{321}}{15}}=12$
$\to x=-\dfrac{73-\sqrt{321}}{4}+10\quad \mathrm{hoặc}\quad \:x=22-\dfrac{\sqrt{321}-25}{4}$
Hoặc
$\to |x-10|+\dfrac{|-\dfrac{21-\sqrt{321}}{15}-2|}{-\dfrac{21-\sqrt{321}}{15}}=12$
$\to x=-\dfrac{73+\sqrt{321}}{4}+10\quad \mathrm{hoặc}\quad \:x=22+\dfrac{25+\sqrt{321}}{4}$
Trường hợp: $y<2\to y-2<0\to |y-2|=-(y-2)$
$\to -2\cdot (y-2)\cdot (\dfrac1y+\dfrac1{y+2})=19$
$\to -\dfrac{2\left(2y+2\right)\left(y-2\right)}{y\left(y+2\right)}=19$
$\to -2\left(2y+2\right)\left(y-2\right)=19y\left(y+2\right)$
$\to y=-\dfrac{17+\sqrt{473}}{23},\:y=\dfrac{\sqrt{473}-17}{23}$
$\to |x-10|+\dfrac{|-\dfrac{17+\sqrt{473}}{23}-2|}{-\dfrac{17+\sqrt{473}}{23}}=12$
$\to x=-\dfrac{35+\sqrt{473}}{4}+10\quad \mathrm{hoặc}\quad \:x=22+\dfrac{\sqrt{473}-13}{4}$
Hoặc $|x-10|+\dfrac{|\dfrac{\sqrt{473}-17}{23}-2|}{\dfrac{\sqrt{473}-17}{23}}=12$
$\to x=-\dfrac{35-\sqrt{473}}{4}+10\quad \mathrm{hoặc}\quad \:x=22-\dfrac{13+\sqrt{473}}{4}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin