

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Giải thích các bước giải:
Bài 5:
ĐKXĐ: $x\ne 0, x\ne 1$
Ta có:
$(\dfrac{x+1}x+\dfrac{2+x-x^2}{x^2-x}):(\dfrac1{x-1}-\dfrac{x^2}{x^3-1})$
$=(\dfrac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\dfrac{2+x-x^2}{x\left(x-1\right)}):(\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2}{\left(x-1\right)\left(x^2+x+1\right)})$
$=\dfrac{x+1}{x\left(x-1\right)}:\dfrac{x+1}{\left(x-1\right)\left(x^2+x+1\right)}$
$=\dfrac{x+1}{x\left(x-1\right)}\cdot\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x+1}$
$=\dfrac{x^2+x+1}{x}$
Bài 6:
ĐKXĐ: $x\ne\pm3, x\ne -2$
Ta có:
$(\dfrac{21}{x^2-9}-\dfrac{x-4}{3-x}-\dfrac{x-1}{3+x})\cdot \dfrac{x+3}{x+2}$
$=(\dfrac{21}{(x+3)(x-3)}+\dfrac{x-4}{x-3}-\dfrac{x-1}{x+3})\cdot \dfrac{x+3}{x+2}$
$=(\dfrac{21}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)})\cdot \dfrac{x+3}{x+2}$
$=\dfrac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\cdot \dfrac{x+3}{x+2}$
$=\dfrac{3x+6}{(x+3)(x-3)}\cdot\dfrac{x+3}{x+2}$
$=\dfrac{3(x+2)}{(x+3)(x-3)}\cdot\dfrac{x+3}{x+2}$
$=\dfrac3{x-3}$
4.ĐKXĐ: $x\ne \pm2$
Ta có:
$(\dfrac{x+2}{x-2}+\dfrac{16}{4-x^2}-\dfrac{x-2}{x+2}):\dfrac{x+4}{x+2}$
$=(\dfrac{x+2}{x-2}-\dfrac{16}{x^2-4}-\dfrac{x-2}{x+2}):\dfrac{x+4}{x+2}$
$=(\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{16}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)})\cdot \dfrac{x+2}{x+4}$
$=\dfrac{\left(x+2\right)^2-16-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\cdot \dfrac{x+2}{x+4}$
$=\dfrac{8x-16}{\left(x-2\right)\left(x+2\right)}\cdot \dfrac{x+2}{x+4}$
$=\dfrac{8}{x+2}\cdot \dfrac{x+2}{x+4}$
$=\dfrac8{x+4}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin