

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
`a)`
`x^2 + 4xy >= -4y^2`
Xét hiệu: `x^2 + 4xy - (-4y^2)`
`= x^2 + 4xy + 4y^2`
`= (x + 2y)^2`
Vì `(x + 2y)^2 >= 0 AA x, y`
Vậy `x^2 + 4xy >= -4y^2` (điều phải chứng minh)
`b)`
`(x + y)^2 >= 4xy`
Xét hiệu: `(x + y)^2 - 4xy`
`= x^2 + 2xy + y^2 - 4xy`
`= x^2 - 2xy + y^2`
`= (x - y)^2`
Vì `(x - y)^2 >= 0 AA x, y`
Vậy `(x + y)^2 >= 4xy` (điều phải chứng minh)
`c)` `x^3 + y^3 >= x^2y + xy^2`
Xét hiệu: `x^3 + y^3 - (x^2y + xy^2)`
`= x^3 + y^3 - x^2y - xy^2`
`= (x^3 - x^2y) + (y^3 - xy^2)`
`= x^2(x - y) - y^2(x - y)`
`= (x - y)(x^2 - y^2)`
`= (x - y)(x - y)(x + y)`
`= (x - y)^2(x + y)`
Vì `(x - y)^2 >= 0 AA x, y`
Vì `x, y` là hai số thực dương nên `x + y > 0`
`=> (x - y)^2(x + y) >= 0`
Vậy `x^3 + y^3 >= x^2y + xy^2` (điều phải chứng minh)
Hãy giúp mọi người biết câu trả lời này thế nào?
![]()
`a)` Xét hiệu `x^2 + 4xy - ( -4y^2 )`
`= x^2 + 4xy + 4y^2`
`= ( x + 2y )^2`
`Do ( x + 2y )^2 >= 0 AA `
`=> x^2 +4xy - ( -4y^2 ) >= 0 AA `
`=> x^2 + 4xy >= -4y^2`
`b)` Xét hiệu `( x + y )^2 - 4xy`
`= x^2 + 2xy + y^2 - 4xy`
`= x^2 - 2xy + y^2`
`= ( x - y )^2`
`Do ( x - y )^2 >= 0 AA `
`=> ( x + y )^2 - 4xy >= 0`
`=> ( x + y )^2 >= 4xy`
`c)` Xét hiệu `x^3 + y^3 - x^2y - xy^2`
`= ( x + y )( x^2 - xy + y^2 - xy( x + y )`
`= ( x + y )( x^2 - 2xy + y^2 )`
`= ( x + y )( x - y )^2`
`Do x ; y > 0 và ( x - y )^2 >= 0 AA x; y`
`=> ( x + y )( x - y )^2 >= 0`
`=> x^3 + y^3 - x^2y - xy^2 >= 0`
`=> x^3 + y^3 >= x^2y + xy^2`
Hãy giúp mọi người biết câu trả lời này thế nào?
![]()
Bảng tin
46
353
38
Dấu = xảy ra khi nào v ạ
3730
1696
1966
hình như ko có hay sao á =))