

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
a)
$\dfrac{3x^2+5x+1}{x^3-1} - \dfrac{1-x}{x^2+x+1} - \dfrac{3}{x-1}$
Ta có $x^3-1 = (x-1)(x^2+x+1)$
Mtc $(x-1)(x^2+x+1)$
$= \dfrac{3x^2+5x+1}{(x-1)(x^2+x+1)} - \dfrac{(1-x)(x-1)}{(x^2+x+1)(x-1)} - \dfrac{3(x^2+x+1)}{(x-1)(x^2+x+1)}$
$= \dfrac{3x^2+5x+1 - (-(x-1))(x-1) - 3(x^2+x+1)}{(x-1)(x^2+x+1)}$
$= \dfrac{3x^2+5x+1 + (x-1)^2 - 3x^2-3x-3}{(x-1)(x^2+x+1)}$
$= \dfrac{3x^2+5x+1 + x^2-2x+1 - 3x^2-3x-3}{(x-1)(x^2+x+1)}$
$= \dfrac{(3x^2+x^2-3x^2) + (5x-2x-3x) + (1+1-3)}{(x-1)(x^2+x+1)}$
$= \dfrac{x^2 - 1}{(x-1)(x^2+x+1)}$
$= \dfrac{(x-1)(x+1)}{(x-1)(x^2+x+1)}$
$= \dfrac{x+1}{x^2+x+1}$
b
$\dfrac{1}{x^2-x+1} + 1 - \dfrac{x^2+2}{x^3+1}$
Ta có $x^3+1 = (x+1)(x^2-x+1)$
Mẫu thức chung: $(x+1)(x^2-x+1)$
$= \dfrac{x+1}{(x^2-x+1)(x+1)} + \dfrac{(x+1)(x^2-x+1)}{(x+1)(x^2-x+1)} - \dfrac{x^2+2}{(x+1)(x^2-x+1)}$
$= \dfrac{x+1 + (x^3+1) - (x^2+2)}{(x+1)(x^2-x+1)}$
$= \dfrac{x+1+x^3+1-x^2-2}{(x+1)(x^2-x+1)}$
$= \dfrac{x^3-x^2+x}{(x+1)(x^2-x+1)}$
$= \dfrac{x(x^2-x+1)}{(x+1)(x^2-x+1)}$
$= \dfrac{x}{x+1}$
c
$\dfrac{7}{x} - \dfrac{x}{x+6} + \dfrac{36}{x^2+6x}$
Ta có $x^2+6x = x(x+6)$
MTC $x(x+6)$
$= \dfrac{7(x+6)}{x(x+6)} - \dfrac{x \cdot x}{x(x+6)} + \dfrac{36}{x(x+6)}$
$= \dfrac{7x+42 - x^2 + 36}{x(x+6)}$
$= \dfrac{-x^2+7x+78}{x(x+6)}$
d
$\dfrac{1}{3x-2} - \dfrac{1}{3x+2} - \dfrac{3x-6}{4-9x^2}$
Ta có $4-9x^2 = (2-3x)(2+3x) = -(3x-2)(3x+2)$
Mẫu thức chung: $(3x-2)(3x+2)$
$= \dfrac{3x+2}{(3x-2)(3x+2)} - \dfrac{3x-2}{(3x+2)(3x-2)} - \dfrac{3x-6}{-(3x-2)(3x+2)}$
$= \dfrac{3x+2 - (3x-2) + (3x-6)}{(3x-2)(3x+2)}$
$= \dfrac{3x+2 - 3x+2 + 3x-6}{(3x-2)(3x+2)}$
$= \dfrac{3x - 2}{(3x-2)(3x+2)}$
$= \dfrac{1}{3x+2}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin