

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Giải thích các bước giải:
Bài 10:
a.ĐKXĐ: $x\ne \pm2, x\ne3$
Ta có:
$A=(\dfrac1{x+2}+\dfrac5{x-2}+\dfrac4{x^2-4}):\dfrac6{x+3}$
$\to A=(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}+\dfrac{5\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{4}{\left(x+2\right)\left(x-2\right)})\cdot\dfrac{x+3}6$
$\to A=\dfrac{x-2+5\left(x+2\right)+4}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x+3}6$
$\to A=\dfrac{6x+12}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x+3}6$
$\to A=\dfrac{6}{x-2}\cdot\dfrac{x+3}6$
$\to A=\dfrac{x+3}{x-2}$
b.Để $A\in Z$
$\to x+3\quad\vdots\quad x-2$
$\to x-2+5\quad\vdots\quad x-2$
$\to 5\quad\vdots\quad x-2$
$\to x-2\in U(5)$
$\to x-2\in\{1, 5, -1, -5\}$
$\to x\in\{3, 7, 1, -3\}$
Do $x\ne -3$
$\to x\in\{3, 7, 1\}$
Bài 11:
a.ĐKXĐ: $x\ne \pm2$
Ta có:
$A=(\dfrac{x+2}{x-2}-\dfrac1{x+2}-\dfrac{x-4}{4-x^2}):\dfrac1{x^2-4}$
$\to A=(\dfrac{x+2}{x-2}-\dfrac1{x+2}+\dfrac{x-4}{x^2-4})\cdot (x^2-4)$
$\to A=(\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-4}{\left(x-2\right)\left(x+2\right)})\cdot (x-2)(x+2)$
$\to A=\dfrac{\left(x+2\right)^2-\left(x-2\right)+x-4}{\left(x-2\right)\left(x+2\right)}\cdot (x-2)(x+2)$
$\to A=\dfrac{x^2+4x+2}{\left(x-2\right)\left(x+2\right)}\cdot (x-2)(x+2)$
$\to A=x^2+4x+2$
b.Để $A=14$
$\to x^2+4x+2=14$
$\to x^2+4x+4=16$
$\to (x+2)^2=16$
$\to x+2=\pm4$
$\to x\in\{2, -6\}$
Do $x\ne\pm2$
$\to x=-6$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin