

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án + Giải thích các bước giải:
`-` Bài 3:
`a)` Thay `x=9` vào `A` có:
$A = \frac{2(9) - 8\sqrt{9}}{\sqrt{9} + 5}$
$= \frac{18 - 8(3)}{3 + 5}$
$= \frac{18 - 24}{8}= \frac{-6}{8}$
$= -\frac{3}{4}$
`-` b)
$B = \left(\frac{2}{\sqrt{x} - 4} - \frac{5 - \sqrt{x}}{x - 16}\right) : \frac{\sqrt{x} + 1}{\sqrt{x} + 4}$
$ = \left(\frac{2}{\sqrt{x} - 4} - \frac{5 - \sqrt{x}}{(\sqrt{x} - 4)(\sqrt{x} + 4)}\right) : \frac{\sqrt{x} + 1}{\sqrt{x} + 4}$
$= \left(\frac{2(\sqrt{x} + 4) - (5 - \sqrt{x})}{(\sqrt{x} - 4)(\sqrt{x} + 4)}\right) : \frac{\sqrt{x} + 1}{\sqrt{x} + 4}$
$= \left(\frac{2\sqrt{x} + 8 - 5 + \sqrt{x}}{(\sqrt{x} - 4)(\sqrt{x} + 4)}\right) : \frac{\sqrt{x} + 1}{\sqrt{x} + 4}$
$ = \frac{3\sqrt{x} + 3}{(\sqrt{x} - 4)(\sqrt{x} + 4)} : \frac{\sqrt{x} + 1}{\sqrt{x} + 4}$
$ = \frac{3(\sqrt{x} + 1)}{(\sqrt{x} - 4)(\sqrt{x} + 4)} \cdot \frac{\sqrt{x} + 4}{\sqrt{x} + 1}$
$= \frac{3}{\sqrt{x} - 4}$
`-` c)
Có:
$P = A \cdot B = \frac{2x - 8\sqrt{x}}{\sqrt{x} + 5} \cdot \frac{3}{\sqrt{x} - 4}$
$= \frac{2\sqrt{x}(\sqrt{x} - 4)}{\sqrt{x} + 5} \cdot \frac{3}{\sqrt{x} - 4}$
$= \frac{6\sqrt{x}}{\sqrt{x} + 5}$
`+)` Thay `P` vào $\sqrt{2P - 1} = P - 2$:
$\sqrt{2\left(\frac{6\sqrt{x}}{\sqrt{x} + 5}\right) - 1} = \frac{6\sqrt{x}}{\sqrt{x} + 5} - 2$
`<=>`$\sqrt{\frac{12\sqrt{x} - (\sqrt{x} + 5)}{\sqrt{x} + 5}} = \frac{6\sqrt{x} - 2(\sqrt{x} + 5)}{\sqrt{x} + 5}$
`<=>`$\sqrt{\frac{11\sqrt{x} - 5}{\sqrt{x} + 5}} = \frac{4\sqrt{x} - 10}{\sqrt{x}+5}$
`<=>`$\frac{11\sqrt{x} - 5}{\sqrt{x} + 5} = \frac{(4\sqrt{x} - 10)^2}{(\sqrt{x} + 5)^2}$
`<=>`$(11\sqrt{x} - 5)(\sqrt{x} + 5) = (4\sqrt{x} - 10)^2$
`<=>`$11x + 55\sqrt{x} - 5\sqrt{x} - 25 = 16x - 80\sqrt{x} + 100$
`<=>`$11x + 50\sqrt{x} - 25 = 16x - 80\sqrt{x} + 100$
`<=>`$0 = 5x - 130\sqrt{x} + 125$
`<=>`$x - 26\sqrt{x} + 25 = 0$
`+)` Đặt `t=sqrt(x)` có:
`t^2 - 26t + 25 = 0`
`<=>(t - 1)(t - 25) = 0`
`<=>`\(\left[ \begin{array}{l}t=1\\t=25\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=1\\x=625\end{array} \right.\)
`+)` Thế `x` vào PT ban đầu có:
`+)` Với `x=1` có:
$P = \frac{6\sqrt{1}}{\sqrt{1} + 5} = \frac{6}{6} = 1$
`=>`$\sqrt{2(1) - 1} = 1 - 2$
`=>`$ \sqrt{1} = -1$
`=>`$1 = -1 \text{ (vô lý)}$
`+)` Với `x=625` có:
$P = \frac{6\sqrt{625}}{\sqrt{625} + 5} = \frac{6(25)}{25 + 5} = \frac{150}{30} = 5$
`=>`$ \sqrt{2(5) - 1} = 5 - 2$
`=>`$\sqrt{9} = 3$
`=>`$ 3 = 3 \text{ (hợp lý)}$
`-` Bài 4:
`-` a)
$x = 4(\sqrt{9+4\sqrt{5}} - \sqrt{9-4\sqrt{5}})$
`+)` $9+4\sqrt{5} = (2+\sqrt{5})^2$
`+)` $9-4\sqrt{5} = (\sqrt{5}-2)^2$
`=>`$\sqrt{9+4\sqrt{5}} = 2+\sqrt{5}$
`=>`$\sqrt{9-4\sqrt{5}} = \sqrt{5}-2$
`<=>`$x = 4(2+\sqrt{5} - (\sqrt{5}-2)) = 4.4= 16$
`->`$B = \frac{\sqrt{16}-2}{\sqrt{16}+1}$
$= \frac{4-2}{4+1} = \frac{2}{5}$
`-` b)
$A = \frac{3(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)} + \frac{1}{\sqrt{x}-2} + \frac{\sqrt{x}-3}{\sqrt{x}}$
$=\frac{3}{\sqrt{x}} + \frac{1}{\sqrt{x}-2} + \frac{\sqrt{x}-3}{\sqrt{x}}$
$= \frac{3(\sqrt{x}-2) + \sqrt{x} + (\sqrt{x}-3)(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}$
$ = \frac{3\sqrt{x}-6 + \sqrt{x} + x - 2\sqrt{x} - 3\sqrt{x} + 6}{\sqrt{x}(\sqrt{x}-2)}$
$= \frac{x - \sqrt{x}}{\sqrt{x}(\sqrt{x}-2)}$
$= \frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-2)}$
$= \frac{\sqrt{x}-1}{\sqrt{x}-2}$
`-` c)
Có:
$A.B = \frac{\sqrt{x}-1}{\sqrt{x}-2} \cdot \frac{\sqrt{x}-2}{\sqrt{x}+1}$
$= \frac{\sqrt{x}-1}{\sqrt{x}+1}$
`<=>`$\sqrt{AB} = \sqrt{\frac{\sqrt{x}-1}{\sqrt{x}+1}} < \frac{2}{3}$
`<=>`$\frac{\sqrt{x}-1}{\sqrt{x}+1} < \frac{4}{9}$
`<=>`$9(\sqrt{x}-1) < 4(\sqrt{x}+1)$
`<=>`$9\sqrt{x} - 9 < 4\sqrt{x} + 4$
`<=>`$5\sqrt{x} < 13$
`<=>`$\sqrt{x} < \frac{13}{5}$
`<=>x < (13/5)^2 = 6,76`
`-` Vì `x>0`,`xne4` và `x` là số nguyên.
`=>`$x \in \{1, 2, 3, 5, 6\}$
Hãy giúp mọi người biết câu trả lời này thế nào?

Bảng tin