Làm giúp mình các câu hỏi này với
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
`a)` `sin(60^o +alpha)-sin(60^o-alpha)`
`=(sin 60^ocosalpha+cos60^osinalpha)-(sin60^ocosalpha-cos60^osinalpha)`
`=2cos60^o*sinalpha`
`=sinalpha`
`b)` `sin^4alpha+cos^4 alpha`
`=sin^4alpha+2sin^2alphacos^2alpha+cos^4alpha-2sin^2alphacos^2alpha`
`=(sin^2alpha+cos^2alpha)-2sin^2alphacos^2alpha`
`=1-2sin^2alphacos^2alpha`
`=1-2*1/4*(2sinalphacosalpha)^2`
`=1-1/2sin^2 (2alpha)`
`=3/4+1/4-1/2sin^2(2alpha)`
`=3/4+1/4(1-2sin^2(2alpha))`
`=3/4+1/4cos4alpha`
`c)` `(sin3xcos2x+sinxcos6x)/(sin4x)`
`=(1/2*(sin(3x+2x)+sin(3x-2x))+1/2*(sin(x+6x)+sin(x-6x)))/(sin4x)`
`=1/2*(sin5x+sinx+sin7x-sin5x)/(sin4x)`
`=1/2*(sin7x+sinx)/(sin4x)`
`=1/2*(2*sin((7x+x)/2)cos((7x-x)/2))/(sin4x)`
`=(sin4xcos3x)/(sin4x)`
`=cos3x`
`d)` `(cos(alpha-beta))/(cos(alpha+beta))`
`=(cosalphacosbeta+sinalphasinbeta)/(cosalphacosbeta-sinalphasinbeta)`
`=(1+(sinalphasinbeta)/(cosalphacosbeta))/(1-(sinalphasinbeta)/(cosalphacosbeta))`
`=(1+(sinalpha)/(cosalpha)*(sinbeta)/(cosbeta))/(1-(sinalpha)/(cosalpha)*(sinbeta)/(cosbeta))`
`=(1+tanalphatanbeta)/(1-tanalphatanbeta)`
Hãy giúp mọi người biết câu trả lời này thế nào?
Đáp án + Giải thích các bước giải:
$\textbf{a}\bigg)$
$\textbf{VT} = \sin (60^\circ + \alpha) - \sin (60^\circ - \alpha)$
$= \sin 60^\circ \cos \alpha + \sin \alpha \cos 60^\circ - (\sin 60^\circ \cos \alpha - \sin \alpha \cos 60^\circ)$
$= \sin 60^\circ \cos \alpha + \sin \alpha \cos 60^\circ - \sin 60^\circ \cos \alpha + \sin \alpha \cos 60^\circ$
$= 2\cos 60^\circ \sin \alpha$
$= 2 \cdot \dfrac{1}{2} \sin \alpha$
$= \sin\alpha = \textbf{VP}$
$\textbf{b}\bigg)$
$\textbf{VT} = \sin^4 \alpha + \cos^4 \alpha$
$= (\sin^2 \alpha + \cos^2 \alpha)^2 - 2\sin^2 \alpha \cos^2 \alpha$
$= 1^2 - \dfrac{1}{2}\sin^2 2\alpha$
$= 1 - \dfrac{1}{4}(2\sin^2 2\alpha)$
$= 1 - \dfrac{1}{4} (2\sin^2 2\alpha - 1 +1)$
$= 1 - \dfrac{1}{4} (2\sin^2 2\alpha - 1) - \dfrac{1}{4}$
$= \dfrac{3}{4} + \dfrac{1}{4} \cos 4\alpha = \textbf{VP}$
$\textbf{c}\bigg)$
$\textbf{VT} = \dfrac{\sin 3x \cos 2x + \sin x \cos 6x}{\sin 4x}$
$= \dfrac{\frac{1}{2}[\sin (3x + 2x) + \sin (3x - 2x)] + \frac{1}{2}[\sin (x + 6x) + \sin (x - 6x)]}{\sin 4x}$
$= \dfrac{\sin 5x + \sin x + \sin 7x + \sin (-5x)}{2\sin 4x}$
$= \dfrac{\sin 5x + \sin x + \sin 7x - \sin 5x}{2 \sin 4x}$
$= \dfrac{\sin x + \sin 7x}{2 \sin 4x}$
$= \dfrac{2 \sin \frac{x + 7x}{2} \cos \frac{x - 7x}{2}}{2 \sin 4x}$
$= \dfrac{\sin 4x \cos (-3x)}{\sin 4x}$
$= \cos (-3x)$
$= \cos 3x = \textbf{VP}$
$\textbf{d}\bigg)$
$\textbf{VT} = \dfrac{\cos (\alpha - \beta)}{\cos (\alpha + \beta)}$
$= \dfrac{\cos \alpha \cos \beta + \sin \alpha \sin\beta}{\cos \alpha \cos \beta - \sin \alpha \sin\beta}$
$= \dfrac{\cos \alpha \cos \beta \big(1 + \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}\big)}{\cos \alpha \cos \beta \big(1 - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}\big)}$
$= \dfrac{1 + \frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \beta}{\cos \beta}}{1 - \frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \beta}{\cos \beta}}$
$= \dfrac{1 + \tan \alpha \tan \beta}{1 - \tan \alpha \tan \beta} = \textbf{VP}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
4
193
18
a ơi
4
193
18
tạo hộ e nhs đk ạ
158
4541
81
giúp t với ạ, câu này 60đ hứa vote full ạ 8011261