

1. Cho `x=``\root[3]{\sqrt{2}-1}` `- 1/\root[3]{\sqrt{2}-1}`
Tính `P = x^3 + 3x + 2`
2. Cm: `\root[3]{1/9}` `- \root[3]{2/9}` `+ \root[3]{4/9}` `=\root[3]{\root[3]{2} -1}`
Y/c: bài 1 rút `\root[3]{\sqrt{2}-1}` về HĐT lập phương của 1 tổng.
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
`1)` *Rút `\root{3}{\sqrt{2}-1}` không được
Từ gt ta có: `x^3=(\root{3}{\sqrt{2}-1}-1/(\root{3}{\sqrt{2}-1}))^3`
`<=> x^3 = \sqrt{2}-1-1/(\sqrt{2}-1)-3.\root{3}{\sqrt{2}-1}. 1/(\root{3}{\sqrt{2}-1})(\root{3}{\sqrt{2}-1}-1/(\root{3}{\sqrt{2}-1}))`
`<=> x^3 = \sqrt{2}-1-(\sqrt{2}+1)/((\sqrt{2}-1)(\sqrt{2}+1))-3x`
`<=> x^3 = \sqrt{2}-1-(\sqrt{2}+1)/(2-1)-3x`
`<=> x^3 = \sqrt{2}-1-(\sqrt{2}+1)-3x`
`<=> x^3 = -2-3x`
`<=> x^3+3x+2=0`
`<=> P=0`
`2)` Ta có: `\root{3}{1/9}-\root{3}{2/9}+\root{3}{4/9}`
`= 1/(\root{3}{9})-(\root{3}{2})/(\root{3}{9})+(\root{3}{4})/(\root{3}{9})`
`= (1-\root{3}{2}+\root{3}{4})/(\root{3}{9}) (1)`
Ta có: `(\root{3}{2}+1)(1-\root{3}{2}+\root{3}{4})=2+1=3`
`=> 1-\root{3}{2}+\root{3}{4} = 3/(\root{3}{2}+1)`
Thay vào `(1)` ta được:
`(1) = 3/((\root{3}{2}+1)\root{3}{9})`
`= (3\root{3}{3})/((\root{3}{2}+1)\root{3}{9} . \root{3}{3})`
`= (3\root{3}{3})/(3(\root{3}{2}+1))`
`= (\root{3}{3})/(\root{3}{2}+1)`
Giả sử: `\root{3}{1/9}-\root{3}{2/9}+\root{3}{4/9} = \root{3}{\root{3}{2}-1}`
`<=> (\root{3}{3})/(\root{3}{2}+1) = \root{3}{\root{3}{2}-1}`
`<=> 3/((\root{3}{2}+1)^3)=\root{3}{2}-1`
`<=> 3=(\root{3}{2}-1)(\root{3}{2}+1)^3`
`<=> 3=(\root{3}{2}-1)[2+1+3\root{3}{2}(\root{3}{2}+1)]`
`<=> 3=(\root{3}{2}-1)(3+3\root{3}{2^2}+3\root{3}{2})`
`<=> 3=3(\root{3}{2}-1)(1+\root{3}{2^2}+\root{3}{2})`
`<=> 3=3(2-1)=3`
`=>` Giả sử đúng
`=>` đpcm
Hãy giúp mọi người biết câu trả lời này thế nào?

Giải thích các bước giải:
1.Đặt:
$\sqrt[3]{\sqrt2-1}=a, \dfrac1{\sqrt[3]{\sqrt2-1}}=b$
$\to ab=1$
$a^3-b^3=\sqrt2-1-\dfrac1{\sqrt2-1}=\dfrac{(\sqrt2-1)^2-1}{\sqrt2-1}=\dfrac{2-2\sqrt{2}}{\sqrt{2}-1}=-2$
Ta có:
$x=\sqrt[3]{\sqrt2-1}-\dfrac1{\sqrt[3]{\sqrt2-1}}$
$\to x=a-b$
$\to x^3=(a-b)^3=a^3-b^3-3ab(a-b)=-2-3\cdot 1\cdot (a-b)$
$\to x^3=-2-3x$
$\to x^3+3x+2=0$
$\to P=0$
2.Ta có:
$\sqrt[3]{\dfrac19}-\sqrt[3]{\dfrac29}+\sqrt[3]{\dfrac49}$
$=\dfrac{1-\sqrt[3]{2}+\sqrt[3]{4}}{\sqrt[3]{9}}$
$=\dfrac{1-\sqrt[3]{2}+(\sqrt[3]{2})^2}{\sqrt[3]{9}}$
$=\dfrac{(1+\sqrt[3]{2})(1-\sqrt[3]{2}+(\sqrt[3]{2})^2)}{\sqrt[3]{9}(1+\sqrt[3]{2})}$
$=\dfrac{1+(\sqrt[3]{2})^3}{\sqrt[3]{9}(1+\sqrt[3]{2})}$
$=\dfrac{1+2}{\sqrt[3]{9}(1+\sqrt[3]{2})}$
$=\dfrac{3}{\sqrt[3]{9}(1+\sqrt[3]{2})}$
$=\dfrac{\sqrt[3]{27}}{\sqrt[3]{9}(1+\sqrt[3]{2})}$
$=\dfrac{\sqrt[3]{3}}{1+\sqrt[3]{2}}$
$=\sqrt[3]{\dfrac{3}{(1+\sqrt[3]{2})^3}}$
$=\sqrt[3]{\dfrac{3}{3+3\sqrt[3]{2}+3\sqrt[3]{4}}}$
$=\sqrt[3]{\dfrac{1}{1+\sqrt[3]{2}+\sqrt[3]{4}}}$
$=\sqrt[3]{\dfrac{\sqrt[3]{2}-1}{(1+\sqrt[3]{2}+\sqrt[3]{4})(\sqrt[3]{2}-1)}}$
$=\sqrt[3]{\dfrac{\sqrt[3]{2}-1}{2-1}}$
$=\sqrt[3]{\sqrt[3]{2}-1}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin