

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Xét `m=2->y=x+1` có `a=1>0`
`->` Đồng biến trên `R`
Xét `m=-2->y=-4x^2+x-3` không đồng biến trên `R`
`y=(4-m^2)x^3+(m-2)x^2+x+m-1`
`y'=[(4-m^2)x^3]'+[(m-2)x^2]'+x'+(m-1)'`
`=3(4-m^2)x^2+2(m-2)x+1`
Để `y` đồng biến trên `R` thì: `y'>0`
Suy ra: `3(4-m^2)x^2+2(m-2)x+1>0\AAx\inR`
`\Delta=[2(m-2)]^2-4*3(4-m^2)*1=4(m-2)^2+12(m^2-4)`
`=4(m-2)(m-2+3m+6)`
`=4(m-2)(4m+4)`
`=16(m-2)(m+1)`
Để `y'>0` thì: `{(4-m^2>0),(16(m-2)(m+1)<=0):}`
`{(-2<m<2),(-1<=m<=2):}`
Vì: `m\inZ->m\in{0;1;-1}`
Kết hợp với `m=2`
`->` Có `4` giá trị `m\in{0;1;-1;2}`
`->` Chọn `bbD`
Hãy giúp mọi người biết câu trả lời này thế nào?
TH1: `m=2=>y=x+1` đồng biến trên `RR` `=>` Thỏa mãn
TH2: `m=-2=>y=-4x^2+x-3`
Một hàm số bậc `2` không thể chỉ đồng biến hoặc chỉ nghịch biến trên `RR`
`=>` Loại
TH3: `m ne +-2 => 4-m^2 ne 0`
`y^'=3(4-m^2)x^2+2(m-2)x+1` đồng biến trên `RR`
`<=>` `y^' >= 0 forall x in RR`
`<=>` `{(a > 0),(Delta^' <= 0):}`
`<=>` `{(4-m^2 > 0),((m-2)^2-3(4-m^2) <= 0):}`
`<=>` `{(m^2 < 4),(4m^2-4m-8 <= 0):}`
`<=>` `{(-2 < m < 2),(-1 <= m <= 2):}`
Kết hợp điều kiện `=>` `m in {-1;0;1}`
Kết hợp các trường hợp `=>` `m in {-1;0;1;2}`
`=>` $\fbox{CHỌN D}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin