

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
`a)` $\tan\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right) \cdot \dfrac{1+\cos\left(\dfrac{\pi}{2}+x\right)}{\sin\left(\dfrac{\pi}{2}+x\right)} = 1$
->S.dụng các công thức lượng giác:
$\tan(A+B) = \dfrac{\tan A + \tan B}{1 - \tan A \tan B}$
$\cos\left(\dfrac{\pi}{2}+x\right) = -\sin x$
$\sin\left(\dfrac{\pi}{2}+x\right) = \cos x$
$\tan\left(\dfrac{\pi}{4}\right) = 1$
`*`thừa số thứ nhất:
$\tan\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right) = \dfrac{\tan\left(\dfrac{\pi}{4}\right) + \tan\left(\dfrac{x}{2}\right)}{1 - \tan\left(\dfrac{\pi}{4}\right)\tan\left(\dfrac{x}{2}\right)} = \dfrac{1 + \tan\left(\dfrac{x}{2}\right)}{1 - \tan\left(\dfrac{x}{2}\right)}$.
`*`thừa số thứ hai:
$\dfrac{1+\cos\left(\dfrac{\pi}{2}+x\right)}{\sin\left(\dfrac{\pi}{2}+x\right)} = \dfrac{1-\sin x}{\cos x}$.
Ta có: $\sin x = 2\sin\left(\dfrac{x}{2}\right)\cos\left(\dfrac{x}{2}\right)$ và $1 - \sin x = \sin^2\left(\dfrac{x}{2}\right) + \cos^2\left(\dfrac{x}{2}\right) - 2\sin\left(\dfrac{x}{2}\right)\cos\left(\dfrac{x}{2}\right) = \left(\cos\left(\dfrac{x}{2}\right) - \sin\left(\dfrac{x}{2}\right)\right)^2$.
Và $\cos x = \cos^2\left(\dfrac{x}{2}\right) - \sin^2\left(\dfrac{x}{2}\right) = \left(\cos\left(\dfrac{x}{2}\right) - \sin\left(\dfrac{x}{2}\right)\right)\left(\cos\left(\dfrac{x}{2}\right) + \sin\left(\dfrac{x}{2}\right)\right)$.
->Do đó, $\dfrac{1-\sin x}{\cos x} = \dfrac{\left(\cos\left(\dfrac{x}{2}\right) - \sin\left(\dfrac{x}{2}\right)\right)^2}{\left(\cos\left(\dfrac{x}{2}\right) - \sin\left(\dfrac{x}{2}\right)\right)\left(\cos\left(\dfrac{x}{2}\right) + \sin\left(\dfrac{x}{2}\right)\right)} = \dfrac{\cos\left(\dfrac{x}{2}\right) - \sin\left(\dfrac{x}{2}\right)}{\cos\left(\dfrac{x}{2}\right) + \sin\left(\dfrac{x}{2}\right)}$.
-> chia cả tử và mẫu cho $\cos\left(\dfrac{x}{2}\right)$ (với điều kiện $\cos\left(\dfrac{x}{2}\right) \neq 0$):
$= \dfrac{\dfrac{\cos(x/2)}{\cos(x/2)} - \dfrac{\sin(x/2)}{\cos(x/2)}}{\dfrac{\cos(x/2)}{\cos(x/2)} + \dfrac{\sin(x/2)}{\cos(x/2)}} = \dfrac{1 - \tan\left(\dfrac{x}{2}\right)}{1 + \tan\left(\dfrac{x}{2}\right)}$.
`=>`
VT $= \dfrac{1 + \tan\left(\dfrac{x}{2}\right)}{1 - \tan\left(\dfrac{x}{2}\right)} \cdot \dfrac{1 - \tan\left(\dfrac{x}{2}\right)}{1 + \tan\left(\dfrac{x}{2}\right)} = 1 (đpcm)$.
`b)` $\tan\left(\dfrac{\pi}{4}+x\right) = \dfrac{1+\sin 2x}{\cos 2x}$}
Biến đổi vế phải (VP):
$VP = \dfrac{1+\sin 2x}{\cos 2x}$.
S/dụng công thức: $1 = \sin^2 x + \cos^2 x$ và $\sin 2x = 2\sin x \cos x$.
$\cos 2x = \cos^2 x - \sin^2 x = (\cos x - \sin x)(\cos x + \sin x)$.
$VP = \dfrac{\sin^2 x + \cos^2 x + 2\sin x \cos x}{(\cos x - \sin x)(\cos x + \sin x)}$.
$VP = \dfrac{(\sin x + \cos x)^2}{(\cos x - \sin x)(\cos x + \sin x)}$.
$VP = \dfrac{\sin x + \cos x}{\cos x - \sin x}$.
->chia cả tử và mẫu cho $\cos x$ (với đ/kiện $\cos x \neq 0$):
$VP = \dfrac{\dfrac{\sin x}{\cos x} + \dfrac{\cos x}{\cos x}}{\dfrac{\cos x}{\cos x} - \dfrac{\sin x}{\cos x}} = \dfrac{\tan x + 1}{1 - \tan x}$.
Biến đổi vế trái (VT):
$VT = \tan\left(\dfrac{\pi}{4}+x\right) = \dfrac{\tan\left(\dfrac{\pi}{4}\right) + \tan x}{1 - \tan\left(\dfrac{\pi}{4}\right)\tan x} = \dfrac{1 + \tan x}{1 - \tan x} (đpcm)$.
`c)` $\cot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right) = \dfrac{\cos x}{1-\sin x}$}
Biến đổi vế phải (VP):
$VP = \dfrac{\cos x}{1-\sin x}$.
`-` S.dụng công thức: $\cos x = \cos^2\left(\dfrac{x}{2}\right) - \sin^2\left(\dfrac{x}{2}\right) = \left(\cos\left(\dfrac{x}{2}\right) - \sin\left(\dfrac{x}{2}\right)\right)\left(\cos\left(\dfrac{x}{2}\right) + \sin\left(\dfrac{x}{2}\right)\right)$.
$1 - \sin x = \sin^2\left(\dfrac{x}{2}\right) + \cos^2\left(\dfrac{x}{2}\right) - 2\sin\left(\dfrac{x}{2}\right)\cos\left(\dfrac{x}{2}\right) = \left(\cos\left(\dfrac{x}{2}\right) - \sin\left(\dfrac{x}{2}\right)\right)^2$.
$VP = \dfrac{\left(\cos\left(\dfrac{x}{2}\right) - \sin\left(\dfrac{x}{2}\right)\right)\left(\cos\left(\dfrac{x}{2}\right) + \sin\left(\dfrac{x}{2}\right)\right)}{\left(\cos\left(\dfrac{x}{2}\right) - \sin\left(\dfrac{x}{2}\right)\right)^2} = \dfrac{\cos\left(\dfrac{x}{2}\right) + \sin\left(\dfrac{x}{2}\right)}{\cos\left(\dfrac{x}{2}\right) - \sin\left(\dfrac{x}{2}\right)}$.
->chia cả tử và mẫu cho $\sin\left(\dfrac{x}{2}\right)$ (với điều kiện $\sin\left(\dfrac{x}{2}\right) \neq 0$):
$VP = \dfrac{\dfrac{\cos(x/2)}{\sin(x/2)} + \dfrac{\sin(x/2)}{\sin(x/2)}}{\dfrac{\cos(x/2)}{\sin(x/2)} - \dfrac{\sin(x/2)}{\sin(x/2)}} = \dfrac{\cot\left(\dfrac{x}{2}\right) + 1}{\cot\left(\dfrac{x}{2}\right) - 1}$.
Biến đổi vế trái (VT):
$VT = \cot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)$.
S/dụng công thức $\cot(A-B) = \dfrac{\cot A \cot B + 1}{\cot B - \cot A}$.
$VT = \dfrac{\cot\left(\dfrac{\pi}{4}\right)\cot\left(\dfrac{x}{2}\right) + 1}{\cot\left(\dfrac{x}{2}\right) - \cot\left(\dfrac{\pi}{4}\right)}$.
Vì $\cot\left(\dfrac{\pi}{4}\right) = 1$:
$VT = \dfrac{1 \cdot \cot\left(\dfrac{x}{2}\right) + 1}{\cot\left(\dfrac{x}{2}\right) - 1} = \dfrac{\cot\left(\dfrac{x}{2}\right) + 1}{\cot\left(\dfrac{x}{2}\right) - 1} (đpcm)$.
Hãy giúp mọi người biết câu trả lời này thế nào?

Đáp án + Giải thích các bước giải:
$\textbf{a}\bigg)$
$\textbf{VT} = \tan \bigg(\dfrac{\pi}{4} + \dfrac{x}{2}\bigg) \cdot \dfrac{1 + \cos \bigg(\dfrac{\pi}{2} + x\bigg)}{\sin \bigg(\dfrac{\pi}{2} + x\bigg)}$
ĐKXĐ: $\begin {cases} \sin \bigg(\dfrac{\pi}{2} + x\bigg) \ne 0 \\ \cos \bigg(\dfrac{\pi}{4} + \dfrac{x}{2}\bigg) \ne 0 \end {cases}$
$\Leftrightarrow \begin {cases} \dfrac{\pi}{2} + x \ne k\pi \\ \dfrac{\pi}{4} + \dfrac{x}{2} \ne \dfrac{\pi}{2} + k\pi \end {cases} (k \in \mathbb{Z})$
$\Leftrightarrow \begin {cases} x \ne k\pi - \dfrac{\pi}{2} \\ \dfrac{\pi}{2} + x \ne \pi + k2\pi \end {cases}(k \in \mathbb{Z})$
$\Leftrightarrow \begin {cases} x \ne k\pi + \dfrac{\pi}{2} \\ x \ne \dfrac{\pi}{2} + k2\pi \end {cases}(k \in \mathbb{Z})$
$\Leftrightarrow x \ne \dfrac{\pi}{2} + k\pi (k \in \mathbb{Z})$
Đặt $t = \dfrac{\pi}{4} +\dfrac{x}{2}, \textbf{VT}$ trở thành:
$\tan t \cdot \dfrac{1 + \cos 2t}{\sin 2t}$
$= \dfrac{\sin t}{\cos t} \cdot \dfrac{1 + 2 \cos^2 t - 1}{2 \sin t \cos t}$
$= \dfrac{\sin t}{\cos t} \cdot \dfrac{2 \cos^2 t}{2 \sin t \cos t}$
$= \dfrac{\sin t}{\cos t} \cdot \dfrac{\cos t}{\sin t}$
$= 1$
$\Rightarrow \tan \bigg(\dfrac{\pi}{4} + \dfrac{x}{2}\bigg) \cdot \dfrac{1 + \cos \bigg(\dfrac{\pi}{2} + x\bigg)}{\sin \bigg(\dfrac{\pi}{2} + x\bigg)} = 1$
$\textbf{b}\bigg) \tan \bigg(\dfrac{\pi}{4} + x\bigg) = \dfrac{1 + \sin 2x}{\cos 2x}$
ĐKXĐ: $\begin {cases} \cos 2x \ne 0 \\ \cos \bigg(\dfrac{\pi}{4} + x\bigg) \ne 0 \end {cases}$
$\Leftrightarrow \begin {cases} 2x \ne \dfrac{\pi}{2} + k\pi \\ \dfrac{\pi}{4} + x \ne \dfrac{\pi}{2} + k\pi \end {cases} (k \in \mathbb{Z})$
$\Leftrightarrow \begin {cases} x \ne \dfrac{\pi}{4} + \dfrac{k\pi}{2} \\ x \ne \dfrac{\pi}{4} + k\pi \end {cases} (k \in \mathbb{Z})$
$\Leftrightarrow x \ne \dfrac{\pi}{4} + \dfrac{k\pi}{2} (k \in \mathbb{Z})$
$\textbf{VT} =\tan \bigg(\dfrac{\pi}{4} + x\bigg)$
$ = \dfrac{\sin \bigg(\dfrac{\pi}{4} + x\bigg)}{\cos \bigg(\dfrac{\pi}{4} + x\bigg)}$
$= \dfrac{\sin \dfrac{\pi}{4} \cos x + \cos \dfrac{\pi}{4} \sin x}{\cos \dfrac{\pi}{4} \cos x - \sin \dfrac{\pi}{4} \sin x}$
$= \dfrac{\dfrac{\sqrt{2}}{2} \cos x + \dfrac{\sqrt{2}}{2} \sin x}{\dfrac{\sqrt{2}}{2} \cos x - \dfrac{\sqrt{2}}{2} \sin x}$
$= \dfrac{\cos x + \sin x}{\cos x - \sin x}$
$= \dfrac{(\cos x + \sin x)^2}{(\cos x + \sin x)(\cos x - \sin x)}$
$= \dfrac{\sin^2 x + \cos^2 x + 2 \sin x \cos x}{\cos^2 x - \sin^2 x}$
$= \dfrac{1 + \sin 2x}{\cos 2x} = \textbf{VP}$
$\textbf{c}\bigg)$
$\cot \bigg(\dfrac{\pi}{4} - \dfrac{x}{2}\bigg) = \dfrac{\cos x}{1 - \sin x}$
ĐKXĐ: $\begin {cases} \sin \bigg(\dfrac{\pi}{4} - \dfrac{x}{2}\bigg) \ne 0 \\ \sin x \ne 1 \end {cases}
$
$\Leftrightarrow \begin {cases} \dfrac{\pi}{4} - \dfrac{x}{2} \ne k\pi \\ x \ne \dfrac{\pi}{2} + k2\pi \end {cases} (k \in \mathbb{Z})$
$\Leftrightarrow \begin {cases} \dfrac{\pi}{2} - x \ne k2\pi \\ x \ne \dfrac{\pi}{2} + k2\pi \end {cases} (k \in \mathbb{Z})$
$\Leftrightarrow \begin {cases} x \ne \dfrac{\pi}{2} - k2\pi \\ x \ne \dfrac{\pi}{2} + k2\pi \end {cases} (k \in \mathbb{Z})$
$\Leftrightarrow x \ne \dfrac{\pi}{2} + k2\pi (k \in \mathbb{Z})$
$\textbf{VT} = \cot \bigg(\dfrac{\pi}{4} - \dfrac{x}{2}\bigg)$
$= \dfrac{\cos \bigg(\dfrac{\pi}{4} - \dfrac{x}{2}\bigg)}{\sin \bigg(\dfrac{\pi}{4} - \dfrac{x}{2}\bigg)}$
$= \dfrac{\cos \dfrac{\pi}{4} \cos \dfrac{x}{2} + \sin\dfrac{\pi}{4} \sin \dfrac{x}{2}}{\sin \dfrac{\pi}{4} \cos \dfrac{x}{2} - \sin \dfrac{x}{2} \cos \dfrac{\pi}{4}}$
$= \dfrac{\dfrac{\sqrt{2}}{2} \cos \dfrac{x}{2} + \dfrac{\sqrt{2}}{2} \sin \dfrac{x}{2}}{\dfrac{\sqrt{2}}{2} \cos \dfrac{x}{2} - \dfrac{\sqrt{2}}{2} \sin \dfrac{x}{2}}$
$= \dfrac{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}$
$= \dfrac{\bigg(\cos \dfrac{x}{2} + \sin \dfrac{x}{2}\bigg)\bigg(\cos \dfrac{x}{2} - \sin \dfrac{x}{2}\bigg)}{\bigg(\cos \dfrac{x}{2} - \sin \dfrac{x}{2}\bigg)^2}$
$= \dfrac{\cos^2 \dfrac{x}{2} - \sin^2 \dfrac{x}{2}}{\sin^2 \dfrac{x}{2} + \cos^2 \dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}$
$= \dfrac{\cos \dfrac{2x}{2}}{1 - \sin \dfrac{2x}{2}}$
$= \dfrac{\cos x}{1 - \sin x} = \textbf{VP}$
Hãy giúp mọi người biết câu trả lời này thế nào?

Bảng tin