

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Giải thích các bước giải:
a.ĐKXĐ: $x\ne\pm1$
$\dfrac1{x+1}-\dfrac{2x}{x-1}+\dfrac{x+3}{x^2-1}$
$=\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x+3}{\left(x+1\right)\left(x-1\right)}$
$=\dfrac{x-1-2x\left(x+1\right)+x+3}{\left(x+1\right)\left(x-1\right)}$
$=\dfrac{-2x^2+2}{x^2-1}$
$=-2$
b.ĐKXĐ: $x\ne\pm\dfrac12$
$\dfrac2{2x+1}-\dfrac1{2x-1}+\dfrac2{4x^2-1}$
$=\dfrac{2\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}-\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{2}{\left(2x+1\right)\left(2x-1\right)}$
$=\dfrac{2\left(2x-1\right)-\left(2x+1\right)+2}{\left(2x+1\right)\left(2x-1\right)}$
$=\dfrac{2x-1}{\left(2x+1\right)\left(2x-1\right)}$
$=\dfrac{1}{2x+1}$
c.ĐKXĐ: $x\ne 0, x\ne\pm\dfrac32$
$\dfrac7{8x^2-18}+\dfrac1{2x^2+3x}-\dfrac1{4x-6}$
$=\dfrac{7x}{2x\left(2x+3\right)\left(2x-3\right)}+\dfrac{2\left(2x-3\right)}{2x\left(2x+3\right)\left(2x-3\right)}-\dfrac{x\left(2x+3\right)}{2x\left(2x+3\right)\left(2x-3\right)}$
$=\dfrac{7x+2\left(2x-3\right)-x\left(2x+3\right)}{2x\left(2x+3\right)\left(2x-3\right)}$
$=\dfrac{-2x^2+8x-6}{2x\left(2x+3\right)\left(2x-3\right)}$
$=-\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(2x+3\right)\left(2x-3\right)}$
d.ĐKXĐ: $x\ne -1$
$\dfrac{3x^2+5x+14}{x^3+1}+\dfrac{x-1}{x^2-x+1}-\dfrac4{x+1}$
$=\dfrac{3x^2+5x+14}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{4\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}$
$=\dfrac{3x^2+5x+14+\left(x-1\right)\left(x+1\right)-4\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}$
$=\dfrac{9x+9}{\left(x+1\right)\left(x^2-x+1\right)}$
$=\dfrac{9}{x^2-x+1}$
Hãy giúp mọi người biết câu trả lời này thế nào?

Bảng tin