

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
1,
có `hat(ADC)=hat(BCD)(t//c` hình thang cân `)`
mà `DB` phân giác `hat(ADC)`
`->hat(BDC)=hat(ADC)/2=hat(BCD)/2`
có `\Delta BDC` vuông tại `B`
`->hat(BDC)+hat(BCD)=90^o`
`->1/2hat(BCD)+hat(BCD)=90^o`
`->3/2hat(BCD)=90^o`
`->hat(BCD)=90^o:3/2=60^o`
2,
xét `\Delta TCD` có:
`hat(TDC)=hat(TCD)=60^o(t//c` hình thang cân `)`
`=>\Delta TCD` đều
3,
có `BC=AD=8cm`
xét `\Delta ABD` có:
`hat(ADB)=hat(ABD)(=hat(BDC))`
`->\Delta ABD` cân tại `A`
`->AB=AD=BC=8cm`
xét `\Delta BCD` vuông tại `B` có:
`hat(BCD)=60^o->\Delta BCD` là nửa tam giác đều
`->DC=2BC=2.8=16(cm)`
`->C_(ABCD)=DC+AB+AD+BC=8+8+8+16=40(cm)`
Hãy giúp mọi người biết câu trả lời này thế nào?
`color[red][~tienhuynh~]`
`1)`
Vì `ABCD` là hình thang cân có `AB // CD`, nên góc `ADC = BCD`.
Vì `DB` là tia phân giác của góc `ADC`, nên góc `ADB = BDC = ADC/2`.
Do đó, góc `ADC = 2 * BDC`.
Suy ra, góc `BCD = 2 * BDC`.
Vì `DB` vuông góc với `BC`, nên góc `DBC = 90°`.
Xét tam giác `DBC`, ta có:
góc `BDC + BCD + DBC = 180°`
góc `BDC + 2 * BDC + 90° = 180°`
`3 * BDC = 90°`
góc `BDC = 30°`
Suy ra, góc `BCD = 2 * 30° = 60°`.
Vậy, góc `BCD = 2 * BDC` và góc `BCD = 60°`.
`2)`
Gọi `T` là giao điểm của `CB` và `DA`.
Vì `AB // CD`, nên góc `TAB = TDC` (đồng vị).
Vì `ABCD` là hình thang cân, nên góc `DAB = ABC`.
Xét tam giác `TAB` và `TCD`, ta có:
góc `TAB = TDC`
góc `TBA = TCD` (cùng bằng góc `ABC`)
Suy ra, tam giác `TAB` đồng dạng với tam giác `TCD` (g.g).
Do đó, góc `ATB = CTD`.
Vì góc `BCD = 60°`, nên góc `TCD = 60°`.
Vì tam giác `TCD` có góc `TCD = 60°` và `TC = TD` (do tam giác `TAB` đồng dạng với tam giác `TCD`), nên tam giác `TCD` đều.
Vậy, tam giác `TCD` đều.
3)
Vì tam giác `TCD` đều, nên `TC = CD = TD`.
Vì `BC = 8cm`, nên `TB = TC - BC`.
Vì tam giác `TAB` đồng dạng với tam giác `TCD`, nên `AB/CD = TB/TC`.
Suy ra, `AB = CD * (TB/TC)`.
Vì góc `BCD = 60°` và `DB` vuông góc với `BC`, nên tam giác `BCD` là tam giác nửa đều.
Do đó, `CD = 2 * BC = 2 * 8 = 16cm`.
Vì tam giác `TCD` đều, nên `TC = CD = 16cm`.
Suy ra, `TB = TC - BC = 16 - 8 = 8cm`.
`AB = 16 * (8/16) = 8cm`.
Vì `ABCD` là hình thang cân, nên `AD = BC = 8cm`.
Chu vi của hình thang `ABCD` là:
`AB + BC + CD + AD = 8 + 8 + 16 + 8 = 40cm`.
cho mik xin hay nhất ik tus cute=))
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin