

Giải hộ phương trình lớp 9
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
Giải thích các bước giải:
`a)`
` 2x ( 3x - 1 ) = ( 3x - 1 ) `
` 2x ( 3x - 1 ) - ( 3x - 1 ) = 0 `
` ( 3x - 1 ) ( 2x - 1 ) = 0 `
` 3x - 1 = 0` hoặc ` 2x - 1 = 0 `
``
`TH1`
` 3x - 1 = 0 `
` 3x = 1 `
` x = 1/3 `
``
`TH2`
` 2x - 1 = 0 `
` 2x = 1 `
` x = 1/2 `
Vậy nghiệm của phương trình là : `x ∈ { 1/3 ; 1/2 } `
``
`b)`
` 3 ( x - 5 ) ( x + 2 ) = x^2 - 5x `
` 3 ( x - 5 ) ( x + 2 ) = x ( x - 5 ) `
` 3 ( x - 5 ) ( x + 2 ) - x ( x - 5 ) = 0 `
` ( x - 5 ) [ 3 ( x + 2 ) - x ] = 0 `
` ( x - 5 ) ( 3x + 6 - x ) = 0 `
` ( x - 5 ) ( 2x + 6 ) = 0`
` x - 5 = 0 ` hoặc ` 2x + 6 = 0 `
``
`TH1`
` x - 5 = 0`
` x = 0 + 5`
` x = 5 `
``
`Th2`
` 2x + 6 = 0`
` 2x = - 6 `
` x = - 3 `
Vậy nghiệm của phương trình là : ` x ∈ { 5 ; - 3 } `
``
`c)`
` ( x - 1 ) ( 2x + 3 ) + 2x = 2 `
` ( x . 2x ) + ( x . 3 ) - ( 1 . 2x ) - ( 1 . 3 ) + 2x = 2 `
` 2x^2 + 3x - 2x - 3 + 2x = 2 `
` 2x^2 + 3x = 2 + 3 `
` 2x^2 + 3x = 5 `
` 2x^2 + 3x - 5 = 0 `
`\Delta = 3^2 . - 4 . 2 . ( - 5 ) = 49 > 0 `
Hệ phương trình có `2` nghiệm phân biệt .
` x_{1} = (- 3 + \sqrt{49})/(4) = 1 `
` x_{2} = (- 3 - \sqrt{49})/(4) = - 5/2 `
Vậy nghiệm của phương trình là : ` x ∈ { 1 ; - 5/2 } `
``
`d)`
` (7 - x)/2 + 2/3 ( x - 7 ) ( x - 3 ) = 0 `
` (3 ( 7 - x ))/6 + (4 ( x - 7 ) ( x - 3 ))/6 = 0 `
` (3 ( 7 - x ) + 4 ( x - 7 ) ( x - 3 ))/6 = 0 `
` (21 - 3x + 4x^2 - 40x + 84)/6 = 0 `
` 21 - 3x + 4x^2 - 40x + 84 = 0 `
` 4x^2 - 43x + 105 = 0 `
` \Delta = ( - 43 )^2 - 4 . 4 . 105 = 169 `
Hệ phương trình có `2` nghiệm phân biệt .
` x_{1} = (43 + \sqrt{169})/(8) = 7 `
` x_{2} = (43 - \sqrt{169})/8 = 15/4 `
Vậy ........
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin