

giải giúp e với 50đ giải đúng đầy đủ chi tiết từng bước ra nha
rút gọn biểu thức
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
`b)`
`B=[1-cosx]/[sin^2x]-1/[1+cosx]`
`B=[(1-cosx)(1+cosx)]/[sin^2x(1+cosx)]-[sin^2x]/[sin^2x(1+cosx)]`
`B=[1-cos^2x]/[sin^2x(1+cosx)]-[sin^2x]/[sin^2x(1+cosx)]`
`B=[sin^2x-sin^2x]/[sin^2x(1+cosx)]`
`B=0`
`c)`
`C=[1-sin^2xcos^2x]/[cos^2x]-cos^2x`
`C=[sin^2x+cos^2x-sin^2xcos^2x]/[cos^2x]-cos^2x`
`C=[sin^2(1-cos^2x)+cos^2x]/[cos^2x]-[cos^4x]/[cos^2x]`
`C=[sin^4x+cos^2x-cos^4x]/[cos^2x]`
`C=[(sin^2x-cos^2x)(sin^2x+cos^2x)+cos^2x]/[cos^2x]`
`C=[sin^2x-cos^2x+cos^2x]/[cos^2x]`
`C=[sin^2x]/[cos^2x]`
`C=tan^2x`
Hãy giúp mọi người biết câu trả lời này thế nào?
`B=(1-cosx)/sin^2x-1/(1+cosx)`
`=((1-cosx)(1+cosx)-sin^2x)/(sin^2x(1+cosx))`
`=(1-cos^2x-sin^2x)/(sin^2x(1+cosx))`
`=(1-1)/(sin^2x(1+cosx))`
`=0`
`C=(1-sin^2xcos^2x)/cos^2x-cos^2x`
`=(1-sin^2xcos^2x-cos^4x)/cos^2x`
`=(1-cos^2x(sin^2x+cos^2x))/cos^2x`
`=(1-cos^2x)/cos^2x`
`=sin^2x/cos^2x`
`=tan^2x`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin