

`A=1+(2x+\sqrt{x}-1)/(1-x) - (2x\sqrt{x}-\sqrt{x}+x)/(1-x\sqrt{x})).(x-\sqrt{x})/(2\sqrt{x}-1)`
rút gọn
tìm x sao cho A= `(6-\sqrt{6})/5`
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án+Giải thích các bước giải:
$(*)$
`A=1+(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}).\frac{x-\sqrt{x}}{2\sqrt{x}-1}`
`(đk: x\ge0;x\ne 1;x\ne 1/4)`
`=1+[\frac{-(2x+2\sqrt{x}-\sqrt{x}-1)}{(\sqrt{x})^{2}-1^{2}}+\frac{2x\sqrt{x}-\sqrt{x}+x}{(\sqrt{x})^{3}-1^{3}}].\frac{x-\sqrt{x}}{2\sqrt{x}-1}`
`=1+[\frac{-[2\sqrt{x}.(\sqrt{x}+1)-1.(\sqrt{x}+1)]}{(\sqrt{x}-1).(\sqrt{x}+1)}+\frac{2x\sqrt{x}-\sqrt{x}+x}{(\sqrt{x}-1).(x+\sqrt{x}+1)}].\frac{x-\sqrt{x}}{2\sqrt{x}-1}`
`=1+[\frac{-(2\sqrt{x}-1).(\sqrt{x}+1)}{(\sqrt{x}-1).(\sqrt{x}+1)}+\frac{2x\sqrt{x}-\sqrt{x}+x}{(\sqrt{x}-1).(x+\sqrt{x}+1)}].\frac{x-\sqrt{x}}{2\sqrt{x}-1}`
`=1+[\frac{1-2\sqrt{x}}{\sqrt{x}-1}+\frac{2x\sqrt{x}-\sqrt{x}+x}{(\sqrt{x}-1).(x+\sqrt{x}+1)}].\frac{x-\sqrt{x}}{2\sqrt{x}-1}`
`=1+[\frac{(1-2\sqrt{x}).(x+\sqrt{x}+1)+2x\sqrt{x}-\sqrt{x}+x}{(\sqrt{x}-1).(x+\sqrt{x}+1)}].\frac{x-\sqrt{x}}{2\sqrt{x}-1}`
`=1+[\frac{x+\sqrt{x}+1-2x\sqrt{x}-2x-2\sqrt{x}+2x\sqrt{x}-\sqrt{x}+x}{(\sqrt{x}-1).(x+\sqrt{x}+1)}].\frac{x-\sqrt{x}}{2\sqrt{x}-1}`
`=1+\frac{(-2\sqrt{x}+1).(x-\sqrt{x})}{(\sqrt{x}-1).(x+\sqrt{x}+1).(2\sqrt{x}-1)}`
`=1+\frac{-(2\sqrt{x}-1).\sqrt{x}.(\sqrt{x}-1)}{(\sqrt{x}-1).(x+\sqrt{x}+1).(2\sqrt{x}-1)}`
`=1+\frac{-\sqrt{x}}{x+\sqrt{x}+1}`
`=\frac{x+\sqrt{x}+1-\sqrt{x}}{x+\sqrt{x}+1}`
`=\frac{x+1}{x+\sqrt{x}+1}`
Vậy `A=\frac{x+1}{x+\sqrt{x}+1}` với `x\ge0;x\ne1;x\ne1/4.`
$(*)$
`A=\frac{6-\sqrt{6}}{5}`
`\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}` `(đk:x\ge0;x\ne1;x\ne 1/4)`
`(6-\sqrt{6}).(x+\sqrt{x}+1)=5.(x+1)`
`6x+6\sqrt{x}+6-x\sqrt{6}-\sqrt{6x}-\sqrt{6}-5x-5=0`
`x+6\sqrt{x}+1-x\sqrt{6}-\sqrt{6x}-\sqrt{6}=0`
`(x-x\sqrt{6})+(1-\sqrt{6})+(6\sqrt{x}-\sqrt{6x})=0`
`x.(1-\sqrt{6})+1.(1-\sqrt{6})-\sqrt{6x}.(1-\sqrt{6})=0`
`(1-\sqrt{6}).(x-\sqrt{6x}+1)=0`
`x-\sqrt{6x}+1=0`
`(\sqrt{x})^{2}-2.\sqrt{x}. \frac{\sqrt{6}}{2}+(\frac{\sqrt{6}}{2})^{2}-1/2=0`
`(\sqrt{x}-\frac{\sqrt{6}}{2})^{2}=1/2`
`(\sqrt{x}-\frac{\sqrt{6}}{2})^{2}=(\pm\frac{\sqrt{2}}{2})^{2}`
`+)TH1:\sqrt{x}-\frac{\sqrt{6}}{2}=\frac{\sqrt{2}}{2}`
`\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}`
`\sqrt{x}=\frac{\sqrt{2}.(1+\sqrt{3})}{(\sqrt{2})^{2}}`
`\sqrt{x}=\frac{1+\sqrt{3}}{\sqrt{2}}`
`x=\frac{(1+\sqrt{3})^{2}}{2}`
`x=\frac{4+2\sqrt{3}}{2}`
`x=2+\sqrt{3}(tmđk)`
`+)TH2: \sqrt{x}-\frac{\sqrt{6}}{2}=-\frac{\sqrt{2}}{2}`
`\sqrt{x}=\frac{\sqrt{6}-\sqrt{2}}{2}`
`\sqrt{x}=\frac{\sqrt{2}.(\sqrt{3}-1)}{(\sqrt{2})^{2}}`
`\sqrt{x}=\frac{\sqrt{3}-1}{\sqrt{2}}`
`x=\frac{(\sqrt{3}-1)^{2}}{2}`
`x=\frac{4-2\sqrt{3}}{2}`
`x=2-\sqrt{3}(tmđk)`
Vậy `x\in{2+\sqrt{3}:2-\sqrt{3}}` để `A=\frac{6-\sqrt{6}}{5}.`
Hãy giúp mọi người biết câu trả lời này thế nào?
![]()
`A=1+((2x+\sqrt{x}-1)/(1-x) - (2x\sqrt{x}-\sqrt{x}+x)/(1-x\sqrt{x})).(x-\sqrt{x})/(2\sqrt{x}-1)`
`A=1+[((x+sqrtx)+(x-1))/((1-sqrtx)(1+sqrtx))-((sqrtx^3-sqrtx)+(sqrtx^3+sqrtx^2))/((1-sqrtx)(1+sqrtx+x))]. (sqrtx(sqrtx-1))/(2sqrtx-1)`
`A=1+[(sqrtx(sqrtx+1)+(sqrtx-1)(sqrtx+1))/((1-sqrtx)(1+sqrtx))-(sqrtx^2(sqrtx+1)+sqrtx(sqrtx^2-1))/((1-sqrtx)(1+sqrtx+x))]. (sqrtx(sqrtx-1))/(2sqrtx-1)`
`A=1+[(sqrtx+sqrtx-1)/(1-sqrtx)-(sqrtx^2(sqrtx+1)+sqrtx(sqrtx^2-1))/((1-sqrtx)(1+sqrtx+x))]. (sqrtx(sqrtx-1))/(2sqrtx-1)`
`A=1+[(2sqrtx-1)/(1-sqrtx)-(sqrtx^2(sqrtx+1)+sqrtx(sqrtx-1)(sqrtx+1))/((1-sqrtx)(1+sqrtx+x))]. (-sqrtx(1-sqrtx))/(2sqrtx-1)`
`A=1+[(2sqrtx-1)/(1-sqrtx)-((sqrtx+1)(sqrtx^2+sqrtx^2-sqrtx))/((1-sqrtx)(1+sqrtx+x))]. (-sqrtx(1-sqrtx))/(2sqrtx-1)`
`A=1+[(2sqrtx-1)/(1-sqrtx)-(sqrtx(sqrtx+1)(2sqrtx-1))/((1-sqrtx)(1+sqrtx+x))]. (-sqrtx(1-sqrtx))/(2sqrtx-1)`
`A=1+[1-(sqrtx(sqrtx+1))/(1+sqrtx+x)]. (-sqrtx)`
`A=1+((1+sqrtx+x)/(1+sqrtx+x)-(x+sqrtx)/(1+sqrtx+x)). (-sqrtx)`
`A=1+1/(1+sqrtx+x) .(-sqrtx)`
`A=(1+sqrtx+x)/(1+sqrtx+x)-(sqrtx)/(1+sqrtx+x)`
`A=(1+x)/(1+sqrtx+x)`
`A=(6-sqrt6)/5`
`=>(1+x)/(1+sqrtx+x)=(6-sqrt6)/5`
`<=>1-(sqrtx)/(1+sqrtx+x)=1-(sqrt6-1)/5`
`<=>(sqrtx)/(1+sqrtx+x)=(sqrt6-1)/5`
`<=>(sqrtx)/(1+sqrtx+x)=((sqrt6-1)(sqrt6+1))/(5(sqrt6+1))`
`<=>(sqrtx)/(1+sqrtx+x)=5/(5(sqrt6+1))`
`<=>(sqrtx)/(1+sqrtx+x)=1/(sqrt6+1)`
`=>sqrtx(sqrt6+1)=1+sqrtx+x`
`<=>x+sqrtx[1-(sqrt6+1)]+1=0`
`<=>x-sqrt6 x+1=0`
`∆=(-sqrt6)^2-4.1.1=2>0`
`=>`pt có 2 nghiệm pb
`sqrtx=(sqrt6+sqrt2)/2=>x=2+sqrt3`
`x_2=(sqrt6-sqrt2)/2=>x=2-sqrt3`
Thử lại ta thấy cả 2 nghiệm thoả mãn
Vậy `S={2+sqrt3;2-sqrt3}`
`- \text{Lamtoanbangcatinhmang} -`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
219
832
58
s cái cuối ko xài delta cho ngắn a .
26079
324418
17420
Nhiều cách mà anh lười:)
26079
324418
17420
Có cách bình phương hai vế cũng tiện