

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
`a)`
Ta có: `1/(sqrt(k)+sqrt(k+1)) = (sqrt(k+1)-sqrt(k))/((k+1)-k) = sqrt(k+1)-sqrt(k)`
`A = (sqrt(2)-sqrt(1))+(sqrt(3)-sqrt(2))+...+(sqrt(n+1)-sqrt(n))`
`A = -sqrt(1) + sqrt(n+1)`
`A = sqrt(n+1) - 1`
``
`b)`
Ta có: `1/(sqrt(k)+sqrt(k+2)) = (sqrt(k+2)-sqrt(k))/((k+2)-k) = (sqrt(k+2)-sqrt(k))/2`
`B = 1/2 * [(sqrt(3)-sqrt(1)) + (sqrt(4)-sqrt(2)) + (sqrt(5)-sqrt(3)) + ... + (sqrt(n+2)-sqrt(n))]`
`B = 1/2 * [-sqrt(1) - sqrt(2) + sqrt(n+1) + sqrt(n+2)]`
`B = (sqrt(n+1) + sqrt(n+2) - 1 - sqrt(2))/2`
``
`c)`
Ta có: `1/(sqrt(k)-sqrt(k+1)) = (sqrt(k)+sqrt(k+1))/(k-(k+1)) = -(sqrt(k)+sqrt(k+1))`
`C = -(sqrt(1)+sqrt(2)) - (-(sqrt(2)+sqrt(3))) + (-(sqrt(3)+sqrt(4))) - ... + (-(sqrt(2n+1)+sqrt(2n+2)))`
`C = -sqrt(1)-sqrt(2) + sqrt(2)+sqrt(3) - sqrt(3)-sqrt(4) + ... - sqrt(2n+1)-sqrt(2n+2)`
`C = -sqrt(1) - sqrt(2n+2)`
`C = -1 - sqrt(2n+2)`
``
`d)`
Ta có: `1/((k+1)sqrt(k)+ksqrt(k+1)) = 1/(sqrt(k)sqrt(k+1)(sqrt(k+1)+sqrt(k)))`
`=1/((k+1)sqrt(k)+ksqrt(k+1)) = ((k+1)sqrt(k)-ksqrt(k+1))/(((k+1)sqrt(k))^2-(ksqrt(k+1))^2)`
`= ((k+1)sqrt(k)-ksqrt(k+1))/(k(k+1)^2-k^2(k+1)) = ((k+1)sqrt(k)-ksqrt(k+1))/(k(k+1))`
`= (k+1)sqrt(k)/(k(k+1)) - ksqrt(k+1)/(k(k+1)) = 1/sqrt(k) - 1/sqrt(k+1)`
`D = (1/sqrt(1)-1/sqrt(2)) + (1/sqrt(2)-1/sqrt(3)) + ... + (1/sqrt(n)-1/sqrt(n+1))`
`D = 1/sqrt(1) - 1/sqrt(n+1)`
`D = 1 - 1/sqrt(n+1)`
Hãy giúp mọi người biết câu trả lời này thế nào?
![]()
Bảng tin
1
-19
3
:) cảm ơn bạn nhìu