

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án `+` Giải thích các bước giải:
`a)`
Vì `AB, AC` là `2` tiếp tuyến của `(O)` nên:
`AB=AC`
`OB=OC (=R)`
`OA` là phân giác của `\hat{BOC}`
`AO` là phân giác của `\hat{BAC}`
`⇒ OA⊥BC`
`→ OA` là trung trực `BC`
Vì `ΔABO` vuông tại `B`
`⇒ 3` điểm `A,B,O` thuộc đường tròn đđường kính `OA` `\text{(1)}`
Vì `ΔACO` vuông tại `C`
`⇒ 3` điểm `A,C,O` thuộc đường tròn đường kính `OA` `\text{(2)}`
Từ `\text{(1)}` và `\text{(2)}` `→ 4` điểm `A,B,O,C` cùng thuộc 1 đường tròn
`⇒` Tứ giác `ABOC` nột tiếp
`b)`
Xét `(O)` có:
`\hat{ABE}=\hat{BFE}=\hat{BFA}` (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn $\mathop{BE}\limits^{\displaystyle\frown}$)
Xét `ΔABE` và `ΔAFB` có:
`\hat{FAB}` chung
`\hat{ABE}` = `\hat{AFB}` `\text{(cmt)}`
`⇒ ΔABE` $\backsim$ `ΔAFB`
`⇒\frac{AB}{AF}=\frac{AE}{AB}`
`⇒ AB^2 = AE.AF` `\text{(đpcm)}`
`@` học tốt ạ!!
$\color{turquoise}{\text{ ₊˚ෆ⋆ ˚。⋆୨ ʚ25nguyenngockhanh(nấmm)ɞ ୧⋆ ˚。⋆ ᶻ 𝗓 𐰁 ࣪}}$
Hãy giúp mọi người biết câu trả lời này thế nào?
a, Xét ΔAOB vuông tại B:
⇒ A,O,B ∈ đường tròn đường kính AO
Xét ΔAOC vuông tại B:
⇒ A,O,C ∈ đường tròn đường kính AO
⇒ A,O,B,C ∈ đường tròn đường kính AO
⇒ Tứ giác ABOC nội tiếp.
b, Xét (O) có:
BFE là góc nội tiếp chắn BE
BOE là góc ở tâm chắn BE
⇒ BFE = $\frac{1}{2}$ BOE
⇒ BFE = $\frac{180-2OBE}{2}$ = 90 - OBE
⇒ BFE = ABE
Xét ΔABE và ΔAFB có:
FAB chung
ABE = AFB
⇒ ΔABE đồng dạng với ΔAFB
⇒ $\frac{AB}{AF}$ = $\frac{AE}{AB}$
⇒ AB² = AE.AF (đpcm)
Chúc bạn học tốt! Xin ctlhn!
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
533
5179
788
A đi hc đây
968
13926
2023
dạa hc ngoan nha anh =)
968
13926
2023
<33
533
5179
788
Gòi cm theo ct cũ lun
968
13926
2023
đou mới mà
533
5179
788
góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn ⌢BE
968
13926
2023
=)
533
5179
788
Đây