

Bài 1: Cho tam giác ABC nhọn. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a. Tam giác ABE bằng tam giác ADC
b. Góc BMC bằng 120°
AntisolGàu nấm biến mất sạch sẽ nhờ công thức hay đến từ dân gianTìm hiểu thêm
Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. Ở miền ngoài của tam giác ABC vẽ các tam giác vuông cân ABE và tam giác ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a. Chứng minh rằng: EM + HC = NH
b. Chứng minh rằng: EN // FM
Bài 3: Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P,Q sao cho chhu vi của DAPQ = 2. Chứng minh rằng: góc PCQ = 45°
Bài 4: Cho tam giác vuông ABC có cạnh AB = AC, tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a. Chứng minh rằng: BE = CD; AD = AE
Bảng tin