Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án`+`Giải thích các bước giải:
`(1 + 1/(1 . 3)) . (1 + 1/(2 . 4)) ... (1 + 1/(2019 . 2021))`
`= (2 . 2)/(1 . 3) . (3 . 3)/(2 . 4) ... (2020 . 2020)/(2019 . 2021)`
`= ((2 . 3 ... 2020) . (2 . 3 ... 2020))/((1 . 2 ... 2019) . (3 . 4 ... 2021))`
`= (2 . 2020)/(1 . 2021)`
`= 4040/2021`
$\color{#1c1c1c}{\text{G}}$$\color{#2a2043}{\text{o}}$$\color{#291063}
{\text{d}}$$\color{#53008}{\text{M}}$$\color{#6b28ac}
{\text{a}}$$\color{#8c4ebd}{\text{t}}$$\color{#B592D6}
{\text{h}}$$\color{#ceaedf}{\text{s}}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin