A=2x+1x2+2
A(x2+2)=2x+1
Ax2+2A−2x−1=0
Ax2−2x+2A−1=0
4−4A(2A−1)=0
4−8A2+4A=0
−8A2+4A+4=0
⇒A=1 hoặc A=−12
∗GTLN:
A=(2x+1x2+2−1)+1
A=2x+1−x2−2x2+2+1
A=−x2+2x−1x2+2+1
A=−(x−1)2x2+2+1
Vì (x−1)2≥0∀x nên −(x−1)2≤0∀x
MÀ x2+2>0∀x
⇒−(x−1)2x2+2≤0∀x
⇒1−(x−1)2x2+2≤1∀x
Hay A≤1∀x
Dấu = xảy ra khi: (x−1)2=0
x−1=0
x=1
Vậy AMax=1 khi x=1