0
0
Cần vẽ hình
Cần gấp
Bài 5 chi tiết và đúng
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Giải thích các bước giải:
Bài 4:
a.Xét $\Delta ABI,\Delta ACI$ có:
Chung $AI$
$AB=AC$
$IB=IC$
$\to \Delta ABI=\Delta ACI(c.c.c)$
$\to \widehat{AIB}=\widehat{AIC}$
Mà $\widehat{AIB}+\widehat{AIC}=180^o$
$\to \widehat{AIB}=\widehat{AIC}=90^o$
$\to AI\perp BC$
b.Xét $\Delta IAB,\Delta ICK$ có:
$IA=IK$
$\widehat{AIB}=\widehat{CIK}$
$IB=IC$
$\to \Delta AIB=\Delta KIC(c.g.c)$
$\to AB=CK$
c.Từ b $\to \widehat{IBA}=\widehat{ICF}$
$\to AB//CK$
Mà $IE\perp AB, IF\perp CK$
$\to EI\perp AB, IF\perp AB$
$\to I, E, F$ thẳng hàng
Bài 5:
Ta có:
$S=\dfrac34+\dfrac89+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}$
$\to S=1-\dfrac14+1-\dfrac19+1-\dfrac1{16}+...+1-\dfrac1{n^2}$
$\to S=n-(\dfrac14+\dfrac19+\dfrac1{16}+...+\dfrac1{n^2})$
$\to S=n-(\dfrac1{2^2}+\dfrac1{3^2}+\dfrac1{4^2}+...+\dfrac1{n^2})$
Ta có:
$\dfrac1{2.3}+\dfrac1{3.4}+\dfrac1{4.5}+...+\dfrac1{n(n+1)}<\dfrac1{2^2}+\dfrac1{3^2}+\dfrac1{4^2}+...+\dfrac1{n^2}<\dfrac1{1.2}+\dfrac1{2.3}+\dfrac1{3.4}+...+\dfrac1{(n-1)n}$
$\to \dfrac12-\dfrac13+\dfrac13-\dfrac14+...+\dfrac1n-\dfrac1{n+1}<\dfrac1{2^2}+\dfrac1{3^2}+\dfrac1{4^2}+...+\dfrac1{n^2}<1-\dfrac12+\dfrac12-\dfrac13+...+\dfrac1{n-1}-\dfrac1n$
$\to \dfrac12-\dfrac1{n+1}<\dfrac1{2^2}+\dfrac1{3^2}+\dfrac1{4^2}+...+\dfrac1{n^2}<1-\dfrac1n$
$\to 0<\dfrac1{2^2}+\dfrac1{3^2}+\dfrac1{4^2}+...+\dfrac1{n^2}<1$
$\to \dfrac1{2^2}+\dfrac1{3^2}+\dfrac1{4^2}+...+\dfrac1{n^2}\notin Z$
$\to n-(\dfrac1{2^2}+\dfrac1{3^2}+\dfrac1{4^2}+...+\dfrac1{n^2})\notin Z$
$\to S\notin Z$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin