Câu 1. Vận tốc của một con tàu cất cánh tại thời điểm t=0s cho đến thời điểm t=126s được cho bởi công thức v(t)= 0.001302t³ -0.09029t² +83 ( vận tốc đơn vị ft/s).Hỏi tàu đạt vận tốc lớn nhất bằng bao nhiêu?
Câu 2 . Sau khi phát hiện 1 bệnh,chuyên gia ước tính số người nhiễm bệnh kể từ ngày phát hiện bệnh nhân đầu tiên đến ngày thứ t là f(t)= -t³+45t²+600t (t<=30).nếu coi f(t) là hàm số xác định trên đoạn [0;30] thì f'(t) được xem là tốc độ truyền bệnh (người/ngày ) tại thời điểm t. Trong 30 ngày đầu tiên,có bao nhiêu ngày mà tốc độ truyền bệnh lớn hơn 1200?
GIÚP MÌNH VỚI
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đây là câu trả lời đã được xác thực
Câu trả lời được xác thực chứa thông tin chính xác và đáng tin cậy, được xác nhận hoặc trả lời bởi các chuyên gia, giáo viên hàng đầu của chúng tôi.
Câu 1:
`v^'(t)=3,906*10^(-3) t^2-0,18058t`
`v^'(t)=0<=>[(t = (90290)/(1953)),(t=0\ "(loại)"):}`
BBT:
\begin{array}{|c|cc|} \hline t&0&&\dfrac{90290}{1953}&&126\\\hline v'(t)&&-&0&+&\\\hline &83&&&&1254\\v(t)&&\searrow&&\nearrow&\\&&&18,67\\\hline\end{array}
Vậy vận tốc lớn nhất của con tàu xấp xỉ `1254\ ft//s`
Câu 2:
Tốc độ truyền bệnh: `f^'(t)=-3t^2+90t+600`
`=>` $f''(t)=-6t+90$
$f''(t)=0⇔t=15$
BBT:
\begin{array}{|c|cc|} \hline t&0&&15&&30\\\hline f''(t)&&+&0&-&\\\hline &&&1275\\f'(t)&&\nearrow&&\searrow&\\&600&&&&600\\\hline\end{array}
Ta có: `f^'(10)=1200;\ f^'(20)=1200`
Vậy kể từ ngày thứ `11` đến ngày thứ `19`, tức có `9` ngày mà tốc độ truyền bệnh lớn hơn `1200`
Hãy giúp mọi người biết câu trả lời này thế nào?
Đáp án:
Giải thích các bước giải:
`a)` Vận tốc con tàu là :
`v'(t)=3.0,001302t^(2)-2.0,09029t` `(0<t<126)`
`v'(t)=0`
$\left[\begin{matrix} t=0\\ x≈46,2\end{matrix}\right.$
Xét trên `(0;126)`
`f(0)=83`
`f(46,2)=18,67`
`f(126)≈1254,2`
Vậy tàu đạt vận tốc lớn nhất là `≈1254,2` ft/s
Câu `2` : `9`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin