a4-(b2-c2)2=a4-(b-c)2(b+c)2=a4-a2(b-c)2
=a2[a2-(b-c)2]=a2(a-b+c)(a+b-c)=a2(-2b)(-2c)=4a2bc
Tương tự ta có:
b4-(c2-a2)2=4ab2c
c4-(a2-b2)2=4abc2
Mặt khác với a+b+c=0 ta có:
a+b=-c⇒(a+b)3=-c3
⇒a3+b3+3ab(a+b)=-c3
⇒a3+b3+c3=-3ab.(-c)=3abc
Đặt vế trái là P ta được:
P=a44a2bc+b44ab2c+c44abc2=14(a3+b3+c3abc)=14.3abcabc=34