

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
`a)`
`<=>cos(x+pi/6)=-sqrt3/2`
`<=>cos(x+pi/6)=cos({5pi}/6)`
`<=>[(x+pi/6={5pi}/6+k2pi),(x+pi/6=-{5pi}/6+k2pi):}`
`<=>[(x={2pi}/3+k2pi),(x=-pi+k2pi):}`
`b)`
`<=>sin(2x+pi/4)=-cosx`
`<=>sin(2x+pi/4)=sin(x-pi/2)`
`<=>[(2x+pi/4=x-pi/2+k2pi),(2x+pi/4={3pi}/2-x+k2pi):}`
`<=>[(x=-{3pi}/4+k2pi),(x={5pi}/12+{k2pi}/3):}`
`c)`
`<=>2sinx.cosx+sqrt3cosx=0`
`<=>cosx(2sinx+sqrt3)=0`
`<=>[(cosx=0),(sinx=-sqrt3/2):}`
`<=>[(x=pi/2+kpi),(x=-pi/3+k2pi),(x={4pi}/3+k2pi):}`
`d)`
`<=>sinx+sin3x+sin2x=0`
`<=>2sin2x.cosx+sin2x=0`
`<=>sin2x(2cosx+1)=0`
`<=>[(sin2x=0),(cosx=-1/2):}`
`<=>[(2x=kpi),(x=+-pi/3+k2pi):}`
`<=>[(x={kpi}/2),(x=+-pi/3+k2pi):}`
Hãy giúp mọi người biết câu trả lời này thế nào?
Đáp án:
`a)` $\left[\begin{matrix} x= \dfrac{2\pi}{3} + k2\pi \\ x= -\pi + k2\pi\end{matrix}\right.$ `(k \in ZZ)`
`b)`$\left[\begin{matrix} x = -\dfrac{3\pi}{4} + k2\pi\\x = \dfrac{\pi}{12} + \dfrac{k}{3}2\pi\end{matrix}\right.$ `(k \in ZZ)`
`c)` $\left[\begin{matrix} x = -\dfrac{3\pi}{4} + k2\pi\\x = \dfrac{\pi}{12} + \dfrac{k}{3}2\pi\end{matrix}\right.$ `(k \in ZZ)`
`d)` \(\left[ \begin{array}{l}x = \dfrac{k}{2}\pi\\ x = \dfrac{2\pi}{3} + k2\pi\\x = -\dfrac{2\pi}{3} + k2\pi \end{array} \right.\) `(k \in ZZ)`
Giải thích các bước giải:
`a) 2cos(x + pi/6) = -sqrt{3}`
`<=> cos(x + pi/6) = (-sqrt{3})/2`
`<=>` $\left[\begin{matrix} x+\dfrac{\pi}{6} = \dfrac{5\pi}{6} + k2\pi \\ x+\dfrac{\pi}{6} = -\dfrac{5\pi}{6} + k2\pi\end{matrix}\right.$ `(k \in ZZ)`
`<=>` $\left[\begin{matrix} x= \dfrac{2\pi}{3} + k2\pi \\ x= -\pi + k2\pi\end{matrix}\right.$ `(k \in ZZ)`
`b) sin(2x + pi/4) + cos x = 0`
`<=> sin(2x + pi/4) + sin(pi/2 - x) = 0`
`<=> 2sin\ (2x + pi/4 + pi/2 - x)/2 . sin\(2x + pi/4 - pi/2 + x)/2 = 0`
`<=>` $\left[\begin{matrix} sin(\dfrac{x + \dfrac{3\pi}{4}}{2})= 0 \\ sin(\dfrac{3x -\dfrac{\pi}{4}}{2})= 0\end{matrix}\right.$
`<=>` $\left[\begin{matrix} \dfrac{x + \dfrac{3\pi}{4}}{2}= k\pi \\ \dfrac{3x -\dfrac{\pi}{4}}{2}= k\pi\end{matrix}\right.$ `(k \in ZZ)`
`<=>` $\left[\begin{matrix} x = -\dfrac{3\pi}{4} + k2\pi\\x = \dfrac{\pi}{12} + \dfrac{k}{3}2\pi\end{matrix}\right.$ `(k \in ZZ)`
`c) sin 2x + sqrt{3} cos x = 0`
`<=> 2sin x . cos x + sqrt{3} cos x = 0`
`<=> cos x . (2sin x + sqrt{3}) = 0`
`<=>` \(\left[ \begin{array}{l}cos x = 0\\2sin x + \sqrt{3} = 0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = \dfrac{\pi}{2} + k\pi\\sin x = -\dfrac{\sqrt{3}}{2}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = \dfrac{\pi}{2} + k\pi\\x = -\dfrac{\pi}{3} + k2\pi\\ x = \pi - (-\dfrac{\pi}{3}) + k2\pi\end{array} \right.\) `(k \in ZZ)`
`<=>` \(\left[ \begin{array}{l}x = \dfrac{\pi}{2} + k\pi\\x = -\dfrac{\pi}{3} + k2\pi\\ x = \dfrac{4\pi}{3} + k2\pi\end{array} \right.\) `(k \in ZZ)`
`d) sin x + sin 2x + sin 3x = 0`
`<=> (sin x + sin 3x) + sin 2x = 0`
`<=> 2 sin 2x . cos x + sin 2x = 0`
`<=> sin 2x . (2cos x + 1) = 0`
`<=>` \(\left[ \begin{array}{l}sin 2x = 0\\2cosx+1=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x = k\pi\\cos x = -\dfrac{1}{2}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = \dfrac{k}{2}\pi\\ x = \dfrac{2\pi}{3} + k2\pi\\x = -\dfrac{2\pi}{3} + k2\pi \end{array} \right.\) `(k \in ZZ)`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin