0
0
Giúp e bài 1 cần gấpppppppppppppp
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Giải thích các bước giải:
a.Ta có:
$C=(\dfrac{2+x}{2-x}+\dfrac{4x^2}{4-x^2}-\dfrac{2-x}{2+x}):\dfrac{x^2-x}{2x-x^2}$
$\to C=(-\dfrac{2+x}{x-2}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{x+2}):\dfrac{x^2-x}{2x-x^2}$
$\to C=(-\dfrac{\left(2+x\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(2-x\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}):\dfrac{x(x-1)}{x(2-x)}$
$\to C=(\dfrac{-\left(2+x\right)^2-4x^2-\left(2-x\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}):\dfrac{x-1}{2-x}$
$\to C=\dfrac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}:\dfrac{x-1}{-(x-2)}$
$\to C=\dfrac{-4x(x+2)}{\left(x-2\right)\left(x+2\right)}\cdot \dfrac{-(x-2)}{x-1}$
$\to C=-\dfrac{4x}{x-2}\cdot \dfrac{-(x-2)}{x-1}$
$\to C=\dfrac{4x}{x-1}$
b.Để $C<4$
$\to \dfrac{4x}{x-1}<4$
$\to \dfrac{4x}{x-1}-4<0$
$\to \dfrac{4x-4(x-1)}{x-1}<0$
$\to \dfrac{4}{x-1}<0$
$\to x-1<0$
$\to x<1$
c.Để $C\in Z$
$\to \dfrac{4x}{x-1}\in Z $
$\to \dfrac{4(x-1)+4}{x-1}\in Z $
$\to \dfrac4{x-1}\in Z$
$\to 4\quad\vdots\quad x-1$
$\to x-1\in U(4)$
$\to x-1\in\{1,2,4,-1, -2, -4\}$
$\to x\in\{2, 3, 5, 0, -1, -3\}$
Mà $x\ne \pm2, x\ne 0$
$\to x\in\{ 3, 5, -1, -3\}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
0
7
0
Cảm ơn ạ