

câu 29
a) cho A=1/1+3 +1/1+3+5+1/1+3+5+7+...+1/1+3+5+7+...+2023 chứng minh rằng A <3/4
b Cho B = 1/2 -1/4 +1/8 - 1/16 +1/32-1/64 < 1/3. CHỨNG minh rằng B <1/3
C) cho C = 1/31+1/32+1/33+...+1/60 chứng minh rằng C >7/12
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
`a)``A=1/(1+3)+1/(1+3+5)+1/(1+3+5+7)+...+1/(1+3+5+7+...+2023)`
`A=1/2^2+1/3^2+1/4^2+...+1/1012^2`
Nhận xét:
`1/3^2<1/2.3`
`1/4^2<1/3.4`
`...`
`1/1012^2<1/1011.1012`
`=>A<1/2^2+1/2.3+1/3.4+...+1/1011.1012`
`=>A<1/4+1/2-1/3+1/3-1/4+...+1/1011-1/1012`
`=>A<1/4+1/2-1/1012`
`=>A<3/4-1/1012<3/4`
Vậy `A<3/4`(đpcm)
`b)``B=1/2-1/4+1/8-1/16+1/32-1/64`
`B=1/2-1/2^2+1/2^3-1/2^4+1/2^5-1/2^6`
`2B=2.(1/2-1/2^2+1/2^3-1/2^4+1/2^5-1/2^6)`
`2B=1-1/2+1/2^2-1/2^3+1/2^4-1/2^5`
`2B+B=(1-1/2+1/2^2-1/2^3+1/2^4-1/2^5)+(1/2-1/2^2+1/2^3-1/2^4+1/2^5-1/2^6)`
`3B=1-1/2^6`
`B=1/3-1/(2^6. 3)<1/3`
Vậy `B<1/3`(đpcm)
`c)``C=1/31+1/32+1/33+...+1/60`
`C=(1/31+1/32+1/33+...+1/45)+(1/46+1/47+1/48+...+1/60)`
Nhận xét:
`1/31+1/32+1/33+...+1/45>1/45+1/45+1/45+...+1/45=1/3`
`1/46+1/46+1/47+...+1/60>1/60+1/60+1/60+...+1/60=1/4`
`=>C>1/3+1/4`
`=>C>4/12+3/12`
`=>C>7/12`
Vậy `C>7/12`(đpcm)
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin