

Có 2 hộp đựng bi.Hộp 1 chứa 4 bi xanh, 6 bi vàng.Hộp 2 chứa 7 bi xanh, 3 bi vàng.Lấy ngẫu nhiên từ mỗi hộp 2 viên bi.Tính xác suất của biến cố A: "Lấy được ít nhất 2 viên bi xanh"
Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đây là câu trả lời đã được xác thực
Câu trả lời được xác thực chứa thông tin chính xác và đáng tin cậy, được xác nhận hoặc trả lời bởi các chuyên gia, giáo viên hàng đầu của chúng tôi.
Đáp án+Giải thích các bước giải:
biến cố `A`: "lấy được ít nhất `2` viên bi xanh"
`->` biến cố `overline{A}`: "lấy được nhiều nhất `1` viên bi xanh"
`->` `n(Omega) = C_{10}^2 .C_{10}^2 = 2025`
+) TH1: không lấy được bi xanh nào
`->` số cách chọn: `C_{6}^2 .C_{3}^2 = 45`
+) TH2: chỉ lấy được `1` bi xanh:
`->` số cách chọn: `C_{4}^1 .C_{6}^1 .C_{3}^2 + C_{6}^2 .C_{7}^1 .C_{3}^1 = 387`
`->` `n(overline{A}) = 45 + 387 = 432`
`->` `P(overline{A}) = 432/2025 = 16/75`
`=>` `P(A) = 1- P(overline{A}) = 1- 16/75 = 59/75`
Hãy giúp mọi người biết câu trả lời này thế nào?
Đây là câu trả lời đã được xác thực
Câu trả lời được xác thực chứa thông tin chính xác và đáng tin cậy, được xác nhận hoặc trả lời bởi các chuyên gia, giáo viên hàng đầu của chúng tôi.
Đáp án:
Giải thích các bước giải:
`n (\Omega) = (C_{10}^2 )^2 = 2025`
Gọi `\overline{A}` là biến cố:"lấy được không quá `1` bi xanh"
`+)` Lấy được `1` bi xanh: `C_{6}^2 . C_{7}^1 . C_{3}^1 + C_{6}^1 . C_{4}^1 . C_{3}^2 = 387` cách
`+)` Không lấy được bi xanh nào: `C_{6}^2 . C_{3}^2 =55` cách
`=> P(A) = 1 - (387+45)/(2025) =(59)/(75)`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin