Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
$\dfrac{V_{S.MNPQ}}{V_{S.ABCD}}=\dfrac{\dfrac{SA}{SM}+\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}}{4.\dfrac{SA}{SM}.\dfrac{SB}{SN}.\dfrac{SC}{SP}.\dfrac{SD}{SQ}}$
Giải thích các bước giải:
Ta chứng minh: $\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}$
$\overrightarrow{SA}+\overrightarrow{SC}=\overrightarrow{SB}+\overrightarrow{SD}$
$⇒\dfrac{SA}{SM}.\overrightarrow{SM}+\dfrac{SC}{SP}.\overrightarrow{SP}=\dfrac{SB}{SN}.\overrightarrow{SN}+\dfrac{SD}{SQ}.\overrightarrow{SQ}$
Vì M, N, P, Q đồng phẳng nên: $\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}$
Nhận xét: $V_{S.ABCD}=2.V_{S.ABD}=2.V_{S.CBD}$
Ta có: $\dfrac{V_{S.MNPQ}}{V_{SABCD}}=\dfrac{V_{S.MNQ}}{2V_{S.ABD}}+\dfrac{V_{S.PNQ}}{2V_{S.CBD}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{1}{2}.\bigg(\dfrac{SM}{SA}.\dfrac{SN}{SB}.\dfrac{SQ}{SD}+\dfrac{SP}{SC}.\dfrac{SN}{SB}.\dfrac{SQ}{SD}\bigg)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{1}{2}.\dfrac{SN}{SB}.\dfrac{SQ}{SD}.\bigg(\dfrac{SM}{SA}+\dfrac{SP}{SC}\bigg)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{1}{2}.\dfrac{1}{\dfrac{SB}{SN}}.\dfrac{1}{\dfrac{SD}{SQ}}.\bigg(\dfrac{1}{\frac{SA}{SM}}+\dfrac{1}{\frac{SC}{SP}}\bigg)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{\dfrac{SA}{SM}+\dfrac{SC}{SP}}{2.\dfrac{SA}{SM}.\dfrac{SB}{SN}.\dfrac{SC}{SP}.\dfrac{SD}{SQ}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{\dfrac{SA}{SM}+\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}}{4.\dfrac{SA}{SM}.\dfrac{SB}{SN}.\dfrac{SC}{SP}.\dfrac{SD}{SQ}}$
Vậy $\dfrac{V_{S.MNPQ}}{V_{S.ABCD}}=\dfrac{\dfrac{SA}{SM}+\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}}{4.\dfrac{SA}{SM}.\dfrac{SB}{SN}.\dfrac{SC}{SP}.\dfrac{SD}{SQ}}$ (đpcm).
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
1032
56
546
wow. perfect
223
47
141
vào nhóm tui không
1112
18272
1146
Bạn vào nhóm mình không?