

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
`x^2+y^2-x-y=8`
`<=>` `x^2-x+y^2-y-8=0`
`<=>` `x^2-x+1/4+y^2-y+1/4=17/2`
`<=>` `(x-1/2)^2+(y-1/2)^2=17/2`
`<=>` `(2x-1)^2/4+(2y-1)^2/4=17/2`
`<=>` `(2x-1)^2+(2y-1)^2=34`
`x,y` nguyên `=>` `(2x-1)^2` và `(2y-1)^2` là hai số chính phương
TH1: `(2x-1)^2=9` và `(2y-1)^2=25` (Tự giải)
TH2: `(2x-1)^2=25` và `(2y-1)^2=9` (Tự giải)
Vậy ..........................
$\\$
`\bb\color{#33a4f5}{\text{@hoanganhnguyen09302}}`
Hãy giúp mọi người biết câu trả lời này thế nào?
`x^2+y^2-x-y=8`
`<=>4x^2+4y^2-4x-4y=32`
`<=>(4x^2-4x+1)+(4y^2-4y+1)=32+1+1`
`<=>(2x-1)^2+(2y-1)^2=34`
Để pt có nghiệm nguyên thì `x,y\inZZ` nên `(2x-1)^2` và `(2y-1)^2` phải là `2` số chính phương.
Ta có: `2x,2y` đều là số chẵn nên `(2x-1)^2` và `(2y-1)^2` là số chính phương lẻ.
`=>34=3^2+5^2;5^2+3^2;(-3)^2+(-5)^2;(-5)^2+(-3)^2;(-3)^2+5^2;(-5)^2+3^2`
`TH_1:`
`=>` $\begin{cases} 2x-1=3\\2y-1=5 \end{cases}$ `<=>` $\begin{cases} x=2\\y=3 \end{cases}$ (nhận)
`TH_2:`
`=>` $\begin{cases} 2x-1=5\\2y-1=3 \end{cases}$ `<=>` $\begin{cases} x=3\\y=2 \end{cases}$ (nhận)
`TH_3:`
`=>` $\begin{cases} 2x-1=-3\\2y-1=-5 \end{cases}$ `<=>` $\begin{cases} x=-1\\y=-2 \end{cases}$ (nhận)
`TH_4:`
`=>` $\begin{cases} 2x-1=-5\\2y-1=-3 \end{cases}$ `<=>` $\begin{cases} x=-2\\y=-1 \end{cases}$ (nhận)
`TH_5:`
`=>` $\begin{cases} 2x-1=-3\\2y-1=5 \end{cases}$ `<=>` $\begin{cases} x=-1\\y=3 \end{cases}$ (nhận)
`TH_6:`
`=>` $\begin{cases} 2x-1=-5\\2y-1=3 \end{cases}$ `<=>` $\begin{cases} x=-2\\y=2 \end{cases}$ (nhận)
Vậy cặp số nguyên `(x,y)` thõa mãn:
`{(2,3);(3,2);(-1,-2);(-2,-1);(-1,3);(-2,2)}`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin