Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đây là câu trả lời đã được xác thực
Câu trả lời được xác thực chứa thông tin chính xác và đáng tin cậy, được xác nhận hoặc trả lời bởi các chuyên gia, giáo viên hàng đầu của chúng tôi.
Đáp án:
Giải thích các bước giải:
Câu 38:
Gọi các điểm như hình vẽ:
Gọi $a;b$ lần lượt là độ dài: $BC$ và $DC$ (`a,b >0`)
Vì `Δ DBC` và `ΔEAC` là tam giác vuông. Áp dụng định lý Py-ta-go:
`{(a^2 + b^2 = 13^2),((7+a)^2 + (4+b)^2 = 20^2):}`
`<=> {(a^2 + b^2 = 13^2),(49 + 14a + a^2 + 16 + 8b + b^2 = 20^2):}`
`<=> {(a^2 + b^2 = 13^2),(14\sqrt{13^2 - b^2} +8b = 166):}`
`<=> {(a^2 + b^2 = 13^2),(b = {4\sqrt{319}}/{11} (TMDK)):}`
`<=> {(a≈ 11,3 (TMDK) ),(b = {4\sqrt{319}}/{11}):}`
`S_{ABDE} = S_{ACE} - S_{DBC} = 1/2 . (7+11,3).(4+{4\sqrt{319}}/{11}) - 1/2. 11,3.{4\sqrt{319}}/{11} ≈ 59,33 (m^2)`
Câu 39:
Gọi chữ số có 5 chữ số khác nhau là `{abcde} `
*Tất cả các chữ số có 5 chữ số khác nhau lập từ 6 số đã cho:
+) Chọn `a \in M\\{0} -> 5` cách
+) Chọn `b,c,d,e \in M\\{a}` và đem sắp xếp: `A_5^4` cách
`=>` Có 600 số
* Tất cả các chữ số khác nhau và chia hết cho $3$ từ 6 số đã cho:
Ta có các bộ số: `(0;1;2;4;5) ; (1;2;3;4;5)`
TH1: Với bộ số `(0;1;2;4;5) :`
+) Chọn `a \{0} -> 4` cách
+) Chọn `b,c,d,e \{a}` và đem sắp xếp: `A_4^4` cách
TH2: Với bộ số `(1;2;3;4;5):`
+) Chọn `a,b,c,d,e` và sắp xếp: `A^5_5` cách
`=> ` Có 216 số
Chọn 2 số thuộc tập hợp $M$ : `n(\Omega) = C^2_{600}`
Gọi A là biến cố chọn được ít nhất một trong hai phần tử chia hết cho $3$:
TH1: Có 1 phần tử chia hết cho $3$: `C^1_{216} . C^1_{600} ` cách
TH2: Có 2 phần tử chia hết cho $3$: `C^2_{216}` cách
`=> n(A) = C^1_{216} . C^1_{600} + C^2_{216}`
`=> p(A) = {n(A)}/{n(\Omega)} = {2547}/{2995}`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
2
738
0
bài đầu sai kết quả
2182
4629
2273
Mình nhận ra lỗi sai rồi cảm ơn bạn nha