Đăng nhập để hỏi chi tiết


Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Ta có:
`sin \hat{B}=\frac{AC}{BC}`
`=>BC=\frac{AC}{sin \hat{B}}=\frac{12}{sin 60^\circ}=8\sqrt{3}`
Xét `\triangle ABC` vuông tại `A` có:
`{(BC^2=AB^2+AC^2),(\hat{B}+\hat{C}=90^\circ):}`
`=>`$\begin{cases} AB=\sqrt{BC^2-AC^2}=\sqrt{(8\sqrt{3})^2-12^2}=4\sqrt{3}\\\hat{C}=90^\circ-60^\circ=30^\circ \end{cases}$
`=>`$S_{\triangle ABC}=\dfrac{1}{2}.AB. AC=\dfrac{1}{2}. 4\sqrt{3}.12=24\sqrt{3}(cm^2)$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin