Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Giải thích các bước giải:
1.Ta có:
$\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}-\dfrac{1}{p}$
$=\dfrac{2p-a-b}{(p-a)(p-b)}+\dfrac{c}{p(p-c)}$
$=\dfrac{c}{(p-a)(p-b)}+\dfrac{c}{p(p-c)}$
$=c\cdot(\dfrac{1}{(p-a)(p-b)}+\dfrac{1}{p(p-c)})$
$=c\cdot\dfrac{p(p-c)+(p-a)(p-b)}{p(p-a)(p-b)(p-c)}$
$=c\cdot\dfrac{\dfrac{a+b+c}2\cdot\dfrac{a+b-c}2+\dfrac{-a+b+c}2\cdot \dfrac{a-b+c}2}{p(p-a)(p-b)(p-c)}$
$=c\cdot\dfrac{ab}{p(p-a)(p-b)(p-c)}$
$=\dfrac{abc}{p(p-a)(p-b)(p-c)}$
$=\dfrac{abc}{S^2}$
$=\dfrac{abc}{S\cdot S}$
$=\dfrac{abc}{\dfrac{abc}{4R}\cdot S}$
$=\dfrac{4R}{S}$
$=\dfrac{4R}{pr}$
$\to \dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}=\dfrac{4R}{pr}+\dfrac1{p}$
$\to \dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}=\dfrac{4R}{pr}+\dfrac{r}{pr}$
$\to \dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}=\dfrac{4R+r}{pr}$
$\to r(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c})=\dfrac{4R+r}{p}$
Gọi $I$ là tâm đường tròn nội tiếp $\Delta ABC, ID\perp BC, IE\perp AC, IF\perp AB$
$\to AE=AF=\dfrac{b+c-a}2=p-a$
$\to \tan\dfrac{A}2=\dfrac{IF}{AF}=\dfrac{r}{p-a}$
Tương tự $\tan\dfrac{B}2=\dfrac{r}{p-b}, \tan\dfrac{C}2=\dfrac{r}{p-c}$
$\to \tan\dfrac{A}2+\tan\dfrac{B}2+\tan\dfrac{C}2=\dfrac{r}{p-a}+\dfrac{r}{p-b}+\dfrac{r}{p-c}=r(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c})=\dfrac{4R+r}p$
$\to đpcm$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin