Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Giải thích các bước giải:
Ta có:
$A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac1{49.50}$
$\to A=\dfrac{2-1}{1.2}+\dfrac{4-3}{3.4}+\dfrac{6-5}{5.6}+...+\dfrac{50-49}{49.50}$
$\to A=\dfrac11-\dfrac12+\dfrac13-\dfrac14+\dfrac15-\dfrac16+...+\dfrac1{49}-\dfrac1{50}$
$\to A=\left(\dfrac11+\dfrac13+\dfrac15+...+\dfrac1{49}\right)-\left(\dfrac12+\dfrac14+...+\dfrac1{50}\right)$
$\to A=\left(1+\dfrac13+\dfrac15+...+\dfrac1{49}\right)-\left(\dfrac12+\dfrac14+...+\dfrac1{50}\right)$
$\to A=\left(1+\dfrac13+\dfrac15+...+\dfrac1{49}\right)+\left(\dfrac12+\dfrac14+...+\dfrac1{50}\right)-2\left(\dfrac12+\dfrac14+...+\dfrac1{50}\right)$
$\to A=\left(1+\dfrac12+\dfrac13+\dfrac14+\dfrac15+....+\dfrac1{49}+\dfrac1{50}\right)-\left(1+\dfrac12+...+\dfrac1{25}\right)$
$\to A=\dfrac1{26}+\dfrac1{27}+\dfrac{1}{28}+...+\dfrac{1}{50}$
$\to A<\dfrac1{25}+\dfrac1{25}+\dfrac{1}{25}+...+\dfrac{1}{25}$
$\to A<25\cdot\dfrac1{25}$
$\to A<1$
Hãy giúp mọi người biết câu trả lời này thế nào?
3019
1895
`@`$Danggiavinh280711$
`A = 1/(1.2) + 1/(3.4) + 1/(5.6) + ... + 1/(49.50)`
`A = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50`
`A = (1 + 1/3 + 1/5 + ... + 1/49) - (1/2 + 1/4 + 1/6 + ... + 1/50)`
`A = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - 2(1/2 + 1/4 + 1/6 + ... + 1/50)`
`A = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - (1 + 1/2 + 1/3 + ... + 1/25)`
`A = 1/26 + 1/27 + 1/28 + ... + 1/50`
Mà `A < 1/25 + 1/25 + 1/25 + ... + 1/25`
`A < 1/25 . 25`
`A < 25/25`
`A < 1` (đpcm)
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin