a) (x-4)(3x+1)=(x-4)(x+1)
<=> (x-4)(3x+1-x-1) =0
<=>2x.(x-4)=0
<=> x=0 hoặc x=4
b) $x^{2}$ -9+4x(x-3)=0
<=>$x^{2}$ -9+4$x^{2}$ -12x=0
<=>5$x^{2}$ -12x-9=0
<=>5$x^{2}$ -15x+3x-9=0
<=> (x-3)(5x+3)=0
<=> \(\left[ \begin{array}{l}x=3\\x=\frac{-3}{5}\end{array} \right.\)
c)$(2x-1)^{2}$ =$(x-3)^{2}$
<=>$(2x-1)^{2}$ -$(x-3)^{2}$=0
<=> (2x+1-x+3)(2x+1+x-3)=0
<=>(x+4)(3x-2)=0
<=>$\left \{ {{x=\frac{2}{3}} \atop {x=-4}} \right.$
d)4$x^{2}$ -25=(5-2x)(4x+3)
<=> 4$x^{2}$ -25=20x+15-8$x^{2}$ -6x
<=>12$x^{2}$ -14x-40=0
<=>6$x^{2}$ -7x-20=0
<=> (2x-5)(3x+4)=0
\(\left[ \begin{array}{l}x=\frac{5}{2}\\x=\frac{-4}{3}\end{array} \right.\)
e)($x^{2}$ +x-1)($x^{2}$ +x+3)=5
Đặt $x^{2}$ +x=a
=> (a-1)(a+3)=5
<=>$a^{2}$ +2a-8=0
<=> \(\left[ \begin{array}{l}a=2\\a=-4\end{array} \right.\)
<=>\(\left[ \begin{array}{l}x^2+x-2=0\\x^2+x+4=0(vô nghiệm)\end{array} \right.\)
<=>\(\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\)
f)$\frac{x+3}{x-3}$ +$\frac{x-3}{x+3}$= $\frac{x^2+2x}{x^2-9}$ +1 (ĐK x $\neq$ $\pm$3)
<=>$\frac{x^2+6x+9+x^2-6x+9}{(x-3)(x+3)}$ =$\frac{x^2+2x+x^2-9}{(x-3)(x+3)}$
=>2$x^{2}$ +18=2$x^{2}$ +2x-9
<=>2x=27
<=>x=$\frac{27}{2}$ (t/m)
g) 5+$\frac{96}{x^2-16}$ =$\frac{2x-1}{x+4}$ +$\frac{3x-1}{x-4}$ (ĐK x$\neq$ $\pm$4)
<=>$\frac{5x^2-80+96}{(x-4)(x+4)}$ =$\frac{2x^2-9x+4+3x^2+11x-4}{(x+4)(x-4)}$
=>5$x^{2}$ +16=5$x^{2}$ +2x
<=>2x=16
<=>x=8 (t/m)
h)$\frac{x}{2x-6}$ +$\frac{x}{2x+2}$ =$\frac{2x+4}{x^2-2x-3}$ (ĐK x$\neq$3,x$\neq$-1)
<=>$\frac{x^2+x+x^2-3x}{2(x-3)(x+1)}$ =$\frac{4x+8}{2(x-3)(x+1)}$
=> 2$x^{2}$ -2x=4x+8
<=>2$x^{2}$ -6x-8=0
<=>$x^{2}$ -3x-4=0
\(\left[ \begin{array}{l}x=4\\x=-1(l)\end{array} \right.\) \(\left[ \begin{array}{l}x=2\\x=-1\end{array} \right.\)