Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
$\begin{array}{l}
A = \dfrac{{12x - 2}}{{4x + 1}}\\
a)Dkxd:4x + 1 \ne 0\\
\Leftrightarrow 4x \ne - 1\\
\Leftrightarrow x \ne - \dfrac{1}{4}\\
Vậy\,x \ne - \dfrac{1}{4}\\
b){x^2} + 2x = 0\\
\Leftrightarrow x\left( {x + 2} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x + 2 = 0 \Leftrightarrow x = - 2
\end{array} \right.\\
+ Khi:x = 0\\
\Leftrightarrow A = \dfrac{{12.0 - 2}}{{4.0 + 1}} = \dfrac{{ - 2}}{1} = - 2\\
+ Khi:x = - 2\\
\Leftrightarrow A = \dfrac{{12.\left( { - 2} \right) - 2}}{{4.\left( { - 2} \right) + 1}} = \dfrac{{ - 26}}{{ - 7}} = \dfrac{{26}}{7}\\
c)A = 1\\
\Leftrightarrow \dfrac{{12x - 2}}{{4x + 1}} = 1\\
\Leftrightarrow 12x - 2 = 4x + 1\\
\Leftrightarrow 8x = 3\\
\Leftrightarrow x = \dfrac{3}{8}\left( {tm} \right)\\
Vậy\,x = \dfrac{3}{8}\\
d)A = \dfrac{{12x - 2}}{{4x + 1}}\\
= \dfrac{{12x + 3 - 5}}{{4x + 1}}\\
= \dfrac{{3.\left( {4x + 1} \right) - 5}}{{4x + 1}}\\
= 3 - \dfrac{5}{{4x + 1}}\\
A \in Z\\
\Leftrightarrow \dfrac{5}{{4x + 1}} \in Z\\
\Leftrightarrow \left( {4x + 1} \right) \in \left\{ { - 5; - 1;1;5} \right\}\\
\Leftrightarrow 4x \in \left\{ { - 6; - 2;0;4} \right\}\\
\Leftrightarrow x \in \left\{ { - \dfrac{3}{2}; - \dfrac{1}{2};0;1} \right\}\left( {tm} \right)\\
e)A < 0\\
\Leftrightarrow \dfrac{{12x - 2}}{{4x + 1}} < 0\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
12x - 2 > 0\\
4x + 1 < 0
\end{array} \right.\\
\left\{ \begin{array}{l}
12x - 2 < 0\\
4x + 1 > 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x > \dfrac{1}{6}\\
x < - \dfrac{1}{4}
\end{array} \right.\left( {ktm} \right)\\
\left\{ \begin{array}{l}
x < \dfrac{1}{6}\\
x > - \dfrac{1}{4}
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow - \dfrac{1}{4} < x < \dfrac{1}{6}\\
Vậy\, - \dfrac{1}{4} < x < \dfrac{1}{6}\\
A > 0\\
\Leftrightarrow \dfrac{{12x - 2}}{{4x + 1}} > 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > \dfrac{1}{6}\\
x < - \dfrac{1}{4}
\end{array} \right.\\
Vậy\,x < - \dfrac{1}{4}\,hoac\,x > \dfrac{1}{6}
\end{array}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin