Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
`S = 1/3 - 2/3^2 + 3/3^3 - 4/3^4 + ... + 99/3^99 - 100/3^100`
`3S = 1 - 2/3 + 3/3^2 - 4/3^3 + ... + 99/3^98 - 100/3^99`
`3S + S = ( 1 - 2/3 + 3/3^2 - 4/3^3 + ... + 99/3^98 - 100/3^99 ) + ( 1/3 - 2/3^2 + 3/3^3 - 4/3^4 + ... + 99/3^99 - 100/3^100 )`
`4S = 1 - 1/3 +1/3^2 - 1/3^3 + 1/3^4 - ... - 1/3^99 + 1/3^100`
`12S = 3 - 1 + 1/3 - 1/3^2 + 1/3^3 - ... - 1/3^98 + 1/3^99`
`12S + 4S = ( 3 - 1 + 1/3 - 1/3^2 + 1/3^3 - ... - 1/3^98 + 1/3^99 ) + ( 1 - 1/3 +1/3^2 - 1/3^3 + 1/3^4 - ... - 1/3^99 + 1/3^100 )`
`16S = 3 - 99/3^99 - 100/3^100`
`S = (3-99/3^99 - 100/3^100)/16`
mà `(3- 99/3^99 - 100/3^100)/16 < 3/15 = 1/5`
`=> S < 1/5`
vậy `S<1/5`
Hãy giúp mọi người biết câu trả lời này thế nào?
Sự kiện